DOI QR코드

DOI QR Code

NO2 gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide

  • Received : 2012.02.24
  • Accepted : 2012.04.13
  • Published : 2012.04.30

Abstract

Single and few-layer graphene nanosheets (GNs) have successfully synthesized by a modified Hummer's method followed by chemical reduction of exfoliated graphene oxide (GO) in the presence of hydrazine monohydrate. GO and GNs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), X-ray diffractions (XRD), Raman spectroscopy, Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Optical microscopy (OM) and by electrical conductivity measurements. The result showed that electrical conductivity of GNs was significantly improved, from $4.2{\times}10^{-4}$ S/m for GO to 12 S/m for GNs, possibly due to the removal of oxygen-containing functional group during chemical reduction. In addition, the $NO_2$ gas sensing characteristics of GNs are also discussed.

Keywords

References

  1. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, "Graphene and graphene oxide: Synthesis, properties, and applications", Adv. Mater. 22 (2010) 3906. https://doi.org/10.1002/adma.201001068
  2. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam and A. Govindaraj, "Graphene: The new-two-demensional nanometerial", Angew. Chem. Int. Ed. 48 (2009) 7752 https://doi.org/10.1002/anie.200901678
  3. S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D.S. Presicceand and A.M. Taurino, "Solid-state gas sensors: state of the art and future activities", J. Optoelectron. Adv. Mater. 5 (2003) 1335.
  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, "Electric field effect in atomically thin carbon films", Science 306 (2004) 666. https://doi.org/10.1126/science.1102896
  5. K.H. Choi, I.J. Yoo, H.S. Lee, K.H. Lee and D.C. Lim, "Fabrication of various carbon nanostructures by using different catalysts", J. Korean Crystal Growth and Crystal Technology 20 (2010) 133. https://doi.org/10.6111/JKCGCT.2010.20.3.133
  6. J.H. Kim, J.H. Hwang, T.Y. Lim and S.H. Kim, "Fabrication of functional nanoparticles by layer-by-layer selfassembly method", J. Korean Crystal Growth and Crystal Technology 19 (2009) 305.
  7. R.H. Baughman, A.A. Zakhidov and W.A. de Heer, "Carbon nanotubes; The route toward applications", Science 297 (2002) 787. https://doi.org/10.1126/science.1060928
  8. M. Ferrari, "Cancer nanotechnology: Opportunities and challenges", Nat. Rev. Cancer 5 (2005) 161. https://doi.org/10.1038/nrc1566
  9. D.R. Kauffman and A. Star, "Carbon nanotube gas and vapor sensors", Angew. Chem., Int. Ed. 47 (2008) 6550 https://doi.org/10.1002/anie.200704488
  10. "Special issue on gas-sensing materials", MRS Bull. 24 (1999).
  11. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, "Two-dimensional gas of massless Dirac fermions in graphene", Nature 438 (2005) 197. https://doi.org/10.1038/nature04233
  12. C. Berger, Z.M. Song, X.B. Li, X.S. Wu, N. Brown, C. Naud, D. Mayo, T.B. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First and W.A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene", Science 312 (2006) 1191. https://doi.org/10.1126/science.1125925
  13. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay and Y. Lin, "Based electrochemical sensors and biosensors: A review", Electroanalysis 22 (2010) 1027. https://doi.org/10.1002/elan.200900571
  14. Y.B. Zhang, J.P. Small, M.E.S. Amori and P. Kim, "Electric field modulation of galvanomagnetic properties of mesoscopic graphite", Phys. Rev. Lett. 94 (2005) 176803. https://doi.org/10.1103/PhysRevLett.94.176803
  15. M.C. Lemme, T.J. Echtermeyer, M. Baus and H. Kurz, "A graphene field-effect device", IEEE Electron Device Lett. 28 (2007) 282. https://doi.org/10.1109/LED.2007.891668
  16. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson and K.S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nat. Mater. 6 (2007) 652. https://doi.org/10.1038/nmat1967
  17. R.S. Sundaram, C.G. Navarro, K. Balasubramanian, M. Burghard and K. Kern, "Electrochemical modification of graphene", Adv. Mater. 20 (2008) 3050. https://doi.org/10.1002/adma.200800198
  18. P.K. Ang, W. Chen, A.T.S. Wee and K.P. Loh, "Solution-gated epitaxial graphene as pH sensor", J. Am. Chem. Soc. 130 (2008) 14392. https://doi.org/10.1021/ja805090z
  19. O. Leenaerts, B. Partoens and F.M. Peeters, "Adsorption of $H_{2}O$, $NH_{3}$, CO, $NO_{2}$, and NO on graphene: A first-principles study", Phy. Rev. B 77 (2008) 125416. https://doi.org/10.1103/PhysRevB.77.125416
  20. B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.L. Gu and W. Duan, "Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor", J. Phys. Chem. C 112 (2008) 13442. https://doi.org/10.1021/jp8021024
  21. S. Peng and K. Cho, "Ab initio study of doped carbon nanotube sensors", Nano Lett. 3 (2003) 513. https://doi.org/10.1021/nl034064u
  22. C.S. Yeung, L.V. Liu and Y.A. Wang, "Adsorption of small gas molecules onto pt-doped single-walled carbon nanotubes", J. Phys. Chem. C 112 (2008) 7401. https://doi.org/10.1021/jp0753981
  23. M. Qazi, T. Vogt and G. Koley, "Trace gas detection using nanostructured graphite layers", Appl. Phy. Lett. 91 (2007) 233101. https://doi.org/10.1063/1.2820387
  24. I. Jung, D. Dikin, S. Park, W. Cai, S.L. Mielke and R.S. Ruoff, "Effect of water vapor on electrical properties of individual reduced graphene oxide sheets", J. Phys. Chem. C 112 (2008) 20264. https://doi.org/10.1021/jp807525d
  25. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei and P.E. Sheehan, "Reduced graphene oxide molecular sensors", Nano Lett. 8 (2008) 3137. https://doi.org/10.1021/nl8013007
  26. J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner and B.H. Weiller, "Practical chemical sensors from chemically derived graphene", ACS Nano 3 (2009) 301. https://doi.org/10.1021/nn800593m
  27. W.S. Hummers and R.E. Offerman, "Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6) (1958) 1339. https://doi.org/10.1021/ja01539a017
  28. S. Stankovich, D.A. Dikin, R.D. Piner, K.A Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.B.T. Nguyen and R.S. Ruoff, "Synsthesis of graphene-based nanosheets via chemical reduction of exfoliated", Carbon 45 (2007) 1558. https://doi.org/10.1016/j.carbon.2007.02.034
  29. C. Hontorialucas, A.J. Lopezpeinado, J.D.D. Lopezgonzalez, M.L. Rojascervantes and R.M. Martinaranda, "Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization", Carbon 33 (1995) 1585. https://doi.org/10.1016/0008-6223(95)00120-3
  30. C. Nethravathi and M. Rajamathi, "Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide", Carbon 46 (2008) 1994. https://doi.org/10.1016/j.carbon.2008.08.013
  31. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov and S. Roth, "Raman spectrum of graphene and graphene layers", Phys. Rev. Lett. 97 (2006) 187401. https://doi.org/10.1103/PhysRevLett.97.187401
  32. J.I. Paredes, S. Villar-Rodil, P. Solis-Ferander, A. Martinez- Alonso and J.M.D. Tascon, "Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide", Langmuir 30(10) (2009) 5957.
  33. B.J. Jiang, C.G. Tian, L. Wang, Y.X. Xu, R.H. Wang, Y.J. Qiao, Y.G. Ma and H.G. Fu, "Facile fabrication of high quality graphene from expandable graphite: simultaneous exfoliation and reduction", Chem. Commun. 46 (2010) 4920. https://doi.org/10.1039/c0cc00383b
  34. M. Chouciar, P. Thordarson and J.A. Stride, "Gramscale production of graphene based on solvothermal synthesis and sonication", Nat. Nanotechnol. 4 (2009) 30. https://doi.org/10.1038/nnano.2008.365
  35. G. Eda, G. Fanchini and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nat. Nanotechnol. 3 (2008) 270. https://doi.org/10.1038/nnano.2008.83
  36. S. Park, J. An, R.D. Piner, I. Jung, D. Yang, A. Velamakanni, S.T. Nguyen and R.S. Ruoff", Aqueous suspension and characterization of chemically modified graphene sheets", Chem. Mater. 20 (2008) 6592. https://doi.org/10.1021/cm801932u
  37. D.C. Wei, Y.Q. Liu, Y. Yang, H.L. Zhang, L.P. Huang and G. Yu, "Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties", Nano Lett. 9 (2009) 1752. https://doi.org/10.1021/nl803279t
  38. D.H. Lee, W.J. Lee and S.O. Kim, "Highly efficient vertical growth of wall-number-selected, N-doped carbon nanotube arrays", Nano Lett. 9 (2009) 1427. https://doi.org/10.1021/nl803262s
  39. C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard and K. Kern, "Electronic transport properties of individual chemically reduced graphene oxide sheets", Nano Lett. 11 (2007) 3499.
  40. P.G. Ren, D.X. Yan, X. Ji, T. Chen and Z.M. Li, "Temperature dependence of graphene oxide reduced by hydrazine hydrate", Nanotechnology 22 (2011) 055705. https://doi.org/10.1088/0957-4484/22/5/055705
  41. J. Moser, A. Verdaguer, D. Jimenez, A. Barreiro and A. Bachtold, "The enviroment of graphene probed by electrostatic force microscopy", Appl. Phys. Lett. 92 (2008) 123507. https://doi.org/10.1063/1.2898501
  42. G. Ko, J. Kim, J. Ahn, Y.M. Park and L. Kim, "Gaphene-based nitrogen dioxide gas sensors", Current Appl. Physics 10 (2010) 1002. https://doi.org/10.1016/j.cap.2009.12.024
  43. F. Yavari, Z. Chen, A.V. Thomas, W. Ren, H.M. Cheng and N. Koratkar, "High sensitivity gas detection using a macroscopic three-dimensional grephene foam network", Scientific Reports doi:10.1038/srep00166.
  44. M. Penza, G. Gassano, R. Rossi, M. Alvisi, A. Rizzo, M.A. Signore, Th. Dikonimos, E. Serra and R. Giorgi, "Enhancement of sensitivity in gas chemiresistors based on carbon nanotube surface functionalized with noble metal (Au, Pt) nanoclusters", Appl. Phys. Lett. 90 (2007) 173123. https://doi.org/10.1063/1.2722207

Cited by

  1. The study of thermal properties of graphene/Cu foam hybrid structures vol.23, pp.5, 2013, https://doi.org/10.6111/JKCGCT.2013.23.5.235
  2. Full-Layer Controlled Synthesis and Transfer of Large-Scale Monolayer Graphene for Nitrogen Dioxide and Ammonia Sensing vol.47, pp.2, 2014, https://doi.org/10.1080/00032719.2013.832270
  3. Facile and size-controllable preparation of graphene oxide nanosheets using high shear method and ultrasonic method vol.12, pp.1, 2017, https://doi.org/10.1080/17458080.2017.1303853