DOI QR코드

DOI QR Code

Effects of Fe, Mn Contents on the Al Alloys and STD61 Steel Die Soldering

Al 합금과 STD61강의 소착에 미치는 첨가원소 Fe, Mn의 영향

  • Received : 2012.02.21
  • Accepted : 2012.03.19
  • Published : 2012.04.27

Abstract

Recently, various attempts to produce a heat sink made of Al 6xxx alloys have been carried out using die-casting. In order to apply die-casting, the Al alloys should be verified for die-soldering ability with die steel. It is generally well known that both Fe and Mn contents have effects on decreasing die soldering, especially with aluminum alloys containing substantial amounts of Si. However, die soldering has not been widely studied for the low Si aluminum (1.0~2.0wt%) alloys. Therefore, in this study, an investigation was performed to consider how the soldering phenomena were affected by Fe and Mn contents in low Si aluminum alloys. Each aluminum alloy was melted and held at $680^{\circ}C$. Then, STD61 substrate was dipped for 2 hr in the melt. The specimens, which were air cooled, were observed using a scanning electron microscope and were line analyzed by an electron probe micro analyzer. The SEM results of the dipping soldering test showed an Al-Fe inter-metallic layer in the microstructure. With increasing Fe content up to 0.35%, the Al-Fe inter-metallic layer became thicker. In Al-1.0%Si alloy, the additional content of Mn also increased the thickness of the inter-metallic layer compared to that in the alloy without Mn. In addition, EPMA analysis showed that Al-Fe inter-metallic compounds such as $Al_2Fe$, $Al_3Fe$, and $Al_5Fe_2$ formed in the die soldering layers.

Keywords

References

  1. S. C. Lim, M. H. Lee and K. M. Kang, Kor. J. Mater. Res., 15(12), 829 (2005) (in Korean). https://doi.org/10.3740/MRSK.2005.15.12.829
  2. W. H. Hsieh, J. Y. Wu, W. H. Shih and W. C. Chiu, Int. J. Heat Mass Tran., 47(23), 5149 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.037
  3. W. H. Shih, W. C. Chiu and W. H. Hsieh, J. Heat Tran., 128, 530 (2006). https://doi.org/10.1115/1.2188461
  4. S. Y. Kim, J. M. Koo and A. V. Kuznetsov, Numer. Heat Tran., 40(1), 21 (2001). https://doi.org/10.1080/10407780121436
  5. S. Y. Kim, J. W. Paek and B. H. Kang, IEEE Trans. Compon. Packag. Tech., 26(1), 262 (2003). https://doi.org/10.1109/TCAPT.2003.809540
  6. E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed, 14.11 (14.3b), Butterworth-Heine mann, UK (1992).
  7. Microstructures and Properties of Aluminum alloys, (in Japanese), p. 171-236, Japan Institute of Light Metals, Japan (1991).
  8. S. Shankar and D. Apelian, Metall. Mater. Trans. B, 33, 465 (2002). https://doi.org/10.1007/s11663-002-0057-7
  9. H. R. Shahverdi, M. R. Ghomashchi, S. Shabestari and J. Hejazi, J. Mater. Process. Tech., 124, 345 (2002). https://doi.org/10.1016/S0924-0136(02)00225-X
  10. H. -J. Kim, C. -M. Cho, C. -Y. Jeong, J. Korean Foundry. Soc., 29(4), 24 (2009) (in Korean).
  11. S. Shankar and D. Apelian, J. Met, 54(8), 47 (2002).
  12. E. K. Holz, in Proceedings of the 7th SDCE International Die Casting Congress (Chicago, Illinois, October, 1972), p.4372.
  13. A. Kopper and R. Donahue, Light Met., 2006, 801-805 (2006).
  14. H. Springer, A. Kostka, E. J. Payton, D. Raabe, A. Kaysser-Pyzalla and G. Eggeler, Acta Mater. 59, 1586 (2011). https://doi.org/10.1016/j.actamat.2010.11.023
  15. M. M. Makhlouf and D Apelian, Casting Characteristics of Aluminum Die Casting Alloys, p. 9-20, The Advanced Casting Research Center, USA (2002).
  16. J. A. Taylor, G. B. Schaffer and D. H. St. John, Metall. Mater. Trans., 30, 1651 (1999). https://doi.org/10.1007/s11661-999-0102-0
  17. N. C. W. Kuijpers, F. J. Vermolen, C. Vuik, P. T. G. Koenis, K. E. Nilsen and S. van der Zwaag, Mater. Sci. Eng., 394, 9 (2005). https://doi.org/10.1016/j.msea.2004.09.073
  18. J. F. Shackelfold, Introduction to Materials Science for Engineers, 3rd ed., App.2, Macmillan, USA (1995).
  19. N. C. W Kuijpers, W. H. Kool, P. T. G. Koenis, K. E. Nilsen, I. Todd and S. van der Zwaag, Mater. Char., 49, 409 (2003).