DOI QR코드

DOI QR Code

Numerical Design Approach to Determining the Dimension of Large-Scale Underground Mine Structures

대규모 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계 접근

  • Received : 2012.03.29
  • Accepted : 2012.04.19
  • Published : 2012.04.30

Abstract

Recently, mining facilities have being installed in an underground space according to a social demand for environment-friendly mine development. The underground structures for mining facilities usually requires a large volume of space with width greater than height, and thus the stability assessment of the large-scale underground mine structure is an important issue. In this study, we analysed a factor of safety based on strength reduction method, and proposed a numerical design approach to determining the dimension of underground mine structures in combination with a strength reduction method and a multivariate regression analysis. Input design parameters considered in the present study were the stress ratio and shear strength of rock mass, and the width and cover depth of underground mine structures. The stabilities of underground mine structures were assessed in terms of factor of safety under different conditions of the above input parameters. It was calculated by the strength reduction method, and several kinds of fit functions were obtained through various multivariate regression analyses. Using a best-fit regression model, we proposed the charts which provide preliminary design information on the dimension of underground mine structures.

최근 친환경적 광산 개발에 대한 사회적 요구에 따라 갱외 시설물도 갱내화하는 경향이 있다. 지하 광산 구조물은 보통 높이보다 폭이 큰 공간을 필요로 하기 때문에 안정성 평가가 중요하다. 본 연구에서는 강도감소법을 이용하여 안전율을 분석하고, 강도감소법과 다변량 회귀분석을 조합하여 지하 광산 구조물의 규모 결정을 위한 수치해석적 설계의 접근방법을 수행하였다. 설계 매개변수는 암반의 전단강도와 측압계수 그리고 지하 광산 구조물의 폭과 설치심도이다. 지하 광산 구조물의 안정성은 입력된 매개변수의 서로 다른 조건하에서 강도 감소법으로 계산된 안전율의 개념으로 평가되었으며, 다양한 다변량 회귀분석을 통해 안전율에 대한 적합한 함수를 얻었다. 최종적으로 최적의 회귀모델을 사용하여 지하 광산 구조물의 규모 결정에 있어서의 초기 설계 정보를 제공하는 도표를 제안했다.

Keywords

References

  1. 김치환, 2000, 개별요소법에 의한 터널의 안정성 해석에 있어 설계정수의 결정, 한국암반공학회지, Vol. 10, pp. 278-290
  2. 선우춘, 정용복, 전양수, 2005, 광주배열과 굴착순서에 따른 지하채광장의 안정성에 대한 수치해석적 연구, KIGAM Bulletin, Vol. 9, No. 3, pp. 47-59
  3. 장보안, 김효열, 2003, 암반의 풍화등급 및 RMR과 변형계수의 상관관계, 2003 대한지질공학회 정기총회 및 학술발표회, pp.119-124
  4. Aydan, O., Ulusay, R. and Kawamoto, T., 1997, Assessment of rock mass strength for underground excavations, Int. J. Rock Mech. & Min. Sci., Vol. 34, No. 3-4, ISSN 0148-9062
  5. Bieniawski, Z. T., 1978, Determination of rock mass deformability: Experience from case histories, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 15, pp. 237-247 https://doi.org/10.1016/0148-9062(78)90956-7
  6. Byung-Sik Chun, Yong-Jae Lee, Sang-Hoon Jung, 2006, The Evaluation for Estimation Method of Deformation Modulus of Rock Mass Using RMR System, Journal of Korean geo-environmental society, 17.2, 25-32.
  7. Chong Kyu Lee and Seo Man Chang, 1996, A Comparative Study on Slope Stability of Analysis Methods, Journal of Korean society of civil engineers, 359-368.
  8. Choon Sunwoo, Dong-Woo Ryu, Hyung-Mok Kim and Ki-Seog Kim, 2011, Study on the Geotechnical Characteristics of Granite in Korea and their Correlation with Rock Classification Method, 21.3, 205-215.
  9. Chung-Mo Koo, Seok-Won Jeon and In-Woo Lee, 2008, Underground Mine Design and Stability Analysis at a Limestone Mine, Journal of Korean society for rock, 18.4, 243-251.
  10. Dawson, E. M., Roth, W. H., Drescher, A., 1999, Slope stability analysis by strength reduction, Geotechnique 49, No. 6, pp. 835-840 https://doi.org/10.1680/geot.1999.49.6.835
  11. Dohyun Park, Hyung-Mok Kim, Dong-Woo Ryu, Joong-Ho Synn and Won-Kyong Song, 2011, Numerical Study on the Optimal Shape of Concrete Plug for Compressed Air Energy Storage Caverns, Journal of Korean society for rock, 21, 164-173.
  12. Dongyeob Lee and Chungsik Yoo, 2002, Slope stability analysis using Finite Element analysis based on shear strength reduction method, Journal of Korean society of civil engineers, 2175-2178.
  13. Giam, S. K. and Donald, I.B, 1988, Determination of critical slip surfaces for slopes via stress-strain calculations, Proc. Fith Australia-New Zealand Corference on Geomech, Sydney, Austrailia, pp. 461-464
  14. Gyo-Won Kim, 1993, Revaluation of geomechanics classifications of rock masses, Journal of Korean geotechnical society, 33-40.
  15. Han-Uk Lim, Chi-Hwan Kim and Hwan-Jo Baek, 2001, Stability Analysis of Rock Slope in Limestone Mine by Numerical Analysis, Journal of Korean society for rock, 11.3, 270-278.
  16. Hoek, E., Brown, E. T., 1980, Underground Excavations in Rock, IMM.
  17. Kwang-Ho You, Yeon-Jun Park and Gyu-Jin Bae, 2001, A study on quantification of tunnel stability estimation, Technical note of Korean society for rock, 82-95.
  18. Lechman J. B. and Griffiths D.V., 2000, Analysis of the Progression of Failure of Earth Slopes by finite elements, Geodenver 2000 ASCE special Publication, pp. 250-265
  19. Matsui, T. and San, K.C, 1992, Finite element slope stability analysis by shear strength reduction technique, Soils and Found, Vol. 32, No.1, pp. 59-70 https://doi.org/10.3208/sandf1972.32.59
  20. Naylor, D.J., 1982, Finite elements slope stability, Numer. Meth in Geomech, Proc. NATO Advanced Study Institute. Lisbon, Portugal, pp. 229-244
  21. Sang-eun Lee and Yoon-ho Jang, 2010, Stability Assesment of the Slope at the Disposal Site of Waste Rock in Limestone Mine, Journal of Korean society for rock, 20.6, 475-490.
  22. Serafim, L. J. and Pereira, P.J., 1983, Consideration on the geomechanical classification of Bieniawski, Proc. of the Int. Symp. on Engineering Geology and Underground Construction, Vol.2, pp.33-42
  23. Taebong Ahn, 2011, The Correlation Between RMR and Deformation Modulus by Rock masses using Pressuremeter, Journal of Korean geo-environmental society, 12, 3-12.
  24. Trueman, R., 1988, An evaluation of strata support techniques in dual life gateroads, Ph.D Thesis, Univ. of wales.
  25. Ugai, K., 1989, A method of calculation of total factor of safety of slopes by elasto-plastic FEM, Soils and Foundations, Vol. 29, No. 2, pp. 190-195 (in Japanese) https://doi.org/10.3208/sandf1972.29.2_190
  26. Ugai, K. and Leshchinsky, D., 1995, Three-dimensional limit equilibrium and finite element analysis: a comparison of results, Soils and Foundations, Vol. 35, No. 4, pp. 1-7
  27. Yeon-Jun Park and Kwang-Ho You, 1998, Stability analysis for jointed rock slope using ubiquitous joint model, Journal of Korean society for rock, 8, 287-295.
  28. Yeon-Jun Park, Young-Su Chae, Kwang-Ho You and Young-Shik Paik, 1997, Slope Stability Analysis by Slice Method and Finite Difference Method- A Comparative Study -, Journal of the Korean geotechnical society, 15.6, 263-282.
  29. Zienkiewicz, O. C., Humpheson, C. and Lewis, R.W, 1975, Associated and non-associated visco-plasticity and plasticity in soil mechanics, Geotechnique, Vol. 25, No. 4, pp.671-689 https://doi.org/10.1680/geot.1975.25.4.671

Cited by

  1. Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage vol.23, pp.2, 2013, https://doi.org/10.7474/TUS.2013.23.2.150
  2. Stability Analysis of Mine Roadway Using Laboratory Tests and In-situ Rock Mass Classification vol.24, pp.3, 2014, https://doi.org/10.7474/TUS.2014.24.3.212