DOI QR코드

DOI QR Code

Establishment of a Stable Cell Line Expressing Human BMP2/7-PTD for Efficient Osteogenic Induction

효과적인 뼈 세포분화 유도를 위한 유전자 재조합 PTD 융합 인간 뼈 형성촉진인자2/7(BMP2/7-PTD)를 발현하는 세포주 개발

  • Park, Seung-Won (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kang, Seok-Woo (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Goo, Tae-Won (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Seong-Ryul (Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Paik, Soon-Young (Department of Microbiology, College of Medicine, The Catholic University of Korea)
  • 박승원 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 강석우 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 구태원 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 김성렬 (농촌진흥청 국립농업과학원 농업생물부 잠사양봉소재과) ;
  • 백순영 (가톨릭대학교 의과대학 미생물학교실)
  • Received : 2012.01.06
  • Accepted : 2012.03.07
  • Published : 2012.04.30

Abstract

Heterodimeric recombinant human bone morphogenetic proteins (rhBMPs) are powerful tools for bone tissue engineering. However, BMPs have several important limitations in their application to bone regeneration. BMPs have a short half-life and must be used in high concentrations, which may be cost-inefficient. To overcome these problems, we established a stable cell line that expressed the fusion protein comprised of recombinant human BMP2/7 heterodimer protein and PTD (rhBMP2/7-PTD). This stable cell line enabled high process yields by continuously expressing rhBMP2/7-PTD products at high levels throughout cultivation. This synthesized BMP7 was fused to a BMP2 protein with four glycine residues (to allow free bond rotation of the domains) and PTD. To demonstrate that the rhBMP2/7-PTD protein that was secreted from an rhBMP2/7-PTD-expressing stable cell line exhibited biological activity consistent with its role as an osteogenic differentiation induction growth factor, we evaluated BMP-induced ALP activity. Our results suggest that this cell line may be a powerful and efficient tool for applications such as bone tissue regeneration.

유전자 재조합 이형이합체 인간 뼈 형성촉진인자(rhBMP)들은 뼈 재생을 위한 조직공학연구에 중요한 요소들이다. 그러나 실제 뼈 재생에 관한 연구를 수행함에 이들을 이용하는 것은 뼈 형성 촉진인자들이 짧은 반감기를 가지며 비교적 고농도의 단백질을 사용해야 하기 때문에 그만큼 많은 비용이 소요된다는 문제점을 가지고 있다. 이러한 한계를 뛰어넘기 위하여, 본 연구에서는 단백질 전달 서열(PTD)이 융합된 인간 뼈 형성촉진인자 2와 7이 이형이합체 유전자 재조합 단백질(rhBMP2/7-PTD)을 발현하는 세포주를 확립하였다. 이형이합체의 형성은 BMP 2와 BMP 7 단백질 및 PTD 영역의 사이에 각각 4개의 glycine 아미노산 염기서열이 첨가될 수 있도록 하여 각 단백질의 folding이 자유롭도록 디자인하였다. 이렇게 개발된 세포주는 고농도의 rhBMP2/7-PTD을 지속적으로 발현하여 배양액 내로 분비함으로 조직공학용 연구 및 개발에 효율적으로 이용 할 수 있다. 이상의 세포주에서 발현된 rhBMP2/7-PTD 단백질은 뼈 세포분화 유도를 확인 할 수 있는 ALP 활성을 나타냄으로써 뼈 성장촉진 단백질로서 생물학적인 활성을 가지고 있음을 보였다. 본 연구의 결과로 개발된 rhBMP2/7-PTD 형질전환 세포주는 향후 뼈 조직 재생과 같은 연구에 중요하고 효과적인 도구로 이용될 수 있을 것으로 사료된다.

Keywords

References

  1. Aono, A., Hazama, M., Notoya, K., Taketomi, S., Yamasaki, H., Tsukuda, R., Sasaki, S. and Fujisawa, Y. 1995. Potent Ectopic Bone-Inducing Activity of Bone Morphogenetic Protein-4/7 Heterodimer. Biochem. Biophys. Res. Commun. 210, 670-677. https://doi.org/10.1006/bbrc.1995.1712
  2. Bilic, R., Simic, P., Jelic, M., Stern-Padovan, R., Dodig, D., van Meerdervoort, H. P., Martinovic, S., Ivankovic, D., Pecina, M. and Vukicevic, S. 2006. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis. Int. Orthop. 30, 128-134. https://doi.org/10.1007/s00264-005-0045-z
  3. Cheeks, M. C., Edwards, A. D., Arnot, C. J. and Slater, N. K. 2009. Gene transfection of HEK cells on supermacroporous polyacrylamide monoliths: a comparison of transient and stable recombinant protein expression in perfusion culture. New Biotechnol. 26, 289-299. https://doi.org/10.1016/j.nbt.2009.08.006
  4. Di Liddo, R., Grandi, C., Venturini, M., Dalzoppo, D., Negro, A., Conconi, M. T. and Parnigotto, P. P. 2010. Recombinant human TAT-OP1 to enhance NGF neurogenic potential: preliminary studies on PC12 cells. Protein Eng. Des. Sel. 23, 889-897. https://doi.org/10.1093/protein/gzq067
  5. Edelman, E. R., Nugent, M. A. and Karnovsky, M. J. 1993. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc. Natl. Acad. Sci. USA 90, 1513-1517. https://doi.org/10.1073/pnas.90.4.1513
  6. Friedlaender, G. E., Perry, C. R., Cole, J. D., Cook, S. D., Cierny, G., Muschler, G. F., Zych, G. A., Calhoun, J. H., LaForte, A. J. and Yin, S. 2001. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J. Bone Joint Surg. Am. 83A(Suppl 1), S151-S158.
  7. Futaki, S., Suzuki, T., Ohashi, W., Yagami, T., Tanaka, S., Ueda, K. and Sugiura, Y. 2001. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276, 5836-5840. https://doi.org/10.1074/jbc.M007540200
  8. Gautschi, O. P., Frey, S. P. and Zellweger, R. 2003. Bone morphogenetic proteins in clinical applications. ANZ J. Surg. 77, 626-631.
  9. Geesink, R. G., Hoefnagels, N. H. and Bulstra, S. K. 1999. Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J. Bone Joint Surg. Br. 81, 710-718. https://doi.org/10.1302/0301-620X.81B4.9311
  10. Gregory, K. E., Ono, R. N., Charbonneau, N. L., Kuo, C. L., Keene, D. R., Bachinger, H. P. and Sakai, L. Y. 2005. The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J. Biol. Chem. 280, 27970-27980. https://doi.org/10.1074/jbc.M504270200
  11. Haidar, Z. S., Hamdy, R. C. and Tabrizian, M. 2009. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part A: Current challenges in BMP delivery. Biotechnol. Lett. 31, 1817-1824. https://doi.org/10.1007/s10529-009-0099-x
  12. Hammoudi, T. M., Lu, H. and Temenoff, J. S. 2010. Long-term spatially defined co-culture within three-dimensional photopatterned hydrogels. Tissue Eng. Pt. C-Meth. 16, 1621-1628. https://doi.org/10.1089/ten.tec.2010.0146
  13. Hazama, M., Aono, A., Ueno, N. and Fujisawa, Y. 1995. Efficient expression of a heterodimer of bone morphogenetic protein subunits using a baculovirus expression system. Biochem. Biophys. Res. Commun. 209, 859-866. https://doi.org/10.1006/bbrc.1995.1578
  14. Ishikawa, H., Kitoh, H., Sugiura, F. and Ishiguro, N. 2007. The effect of recombinant human bone morphogenetic protein-2 on the osteogenic potential of rat mesenchymal stem cells after several passages. Acta Orthopaedica. 78, 285-292. https://doi.org/10.1080/17453670710013816
  15. Kawai, M., Maruyama, H., Bessho, K., Yamamoto, H., Miyazaki, J. I. and Yamamoto, T. 2009. Simple strategy for bone regeneration with a BMP-2/7 gene expression cassette vector. Biochem. Biophys. Res. Commun. 390, 1012-1017. https://doi.org/10.1016/j.bbrc.2009.10.099
  16. Kingsley, D. M. 1994. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 8, 133-146. https://doi.org/10.1101/gad.8.2.133
  17. Lianteng, Z. C., Chen, C., Pang, X., Uludag, H. and Jiang, H. 2011. Synergistic effect of recombinant human bone morphogenic protein-7 and osteogenic differentiation medium on human bone-marrow-derived mesenchymal stem cells in vitro. Int. Orthop. 35, 1889-1895. https://doi.org/10.1007/s00264-011-1247-1
  18. Makino, T., Hak, D. J., Hazelwood, S. J., Curtiss, S. and Reddi, A. H. 2005. Prevention of atrophic nonunion development by recombinant human bone morphogenetic protein-7. J. Orthop. Res. 23, 632-638. https://doi.org/10.1016/j.orthres.2004.09.009
  19. Mihelic, R., Pecina, M., Jelic, M., Zoricic, S., Kusec, V., Simic, P., Bobinac, D., Lah, B., Legovic, D. and Vukicevic, S. 2004. Bone morphogenetic protein-7 (osteogenic protein-1) promotes tendon graft integration in anterior cruciate ligament reconstruction in sheep. Am. J. Sports Med. 32, 1619-1625. https://doi.org/10.1177/0363546504263703
  20. Mont, M. A., Ragland, P. S., Biggins, B., Friedlaender, G., Patel, T., Cook, S., Etienne, G., Shimmin, A., Kildey, R., Rueger, D. C. and Einhorn, T. A. 2004. Use of bone morphogenetic proteins for musculoskeletal applications. An overview. J. Bone Joint Surg. 86, 41-55.
  21. Park, J., Ryu, J., Kim, K. A., Lee, H. J., Bahn, J. H., Han, K., Choi, E. Y., Lee, K. S., Kwon, H. Y. and Choi, S. Y. 2002. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol. 83, 1173-1181.
  22. Pecina, M., Giltaij, L. R. and Vukicevic, S. 2001. Orthopaedic applications of osteogenic protein-1 (BMP-7). Int. Orthop. 25, 203-208. https://doi.org/10.1007/s002640100262
  23. Popiel, H. A., Nagai, Y., Fujikake, N. and Toda, T. 2007. Protein transduction domain-mediated delivery of QBP1 suppresses polyglutamine-induced neurodegeneration in vivo. Mol. Ther. 15, 303-309. https://doi.org/10.1038/sj.mt.6300045
  24. Russell, D. and Sambrook, J. 2000. Molecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  25. Sangadala, S., Okada, M., Liu, Y., Viggeswarapu, M., Titus, L. and Boden, S. D. 2009. Engineering, cloning, and functional characterization of recombinant LIM mineralization protein-1 containing an N-terminal HIV-derived membrane transduction domain. Protein Expression Purifi. 65, 165-173. https://doi.org/10.1016/j.pep.2009.01.006
  26. Varani, J., Dame, M., Rediske, J., Beals, T. F. and Hillegas, W. 1985. Substrate-dependent differences in growth and biological properties of fibroblasts and epithelial cells grown in microcarrier culture. J. Biol. Stand. 13, 67-76. https://doi.org/10.1016/S0092-1157(85)80035-4
  27. Wang, X., Wenk, E., Zhang, X., Meinel, L., Vunjak-Novakovic, G. and Kaplan, D. L. 2009. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J. Control Release 134, 81-90. https://doi.org/10.1016/j.jconrel.2008.10.021
  28. Yuan, S., Pan, Q., Liu, W., Wu, B., Han, X. and Bi, Z. 2011. Recombinant BMP 4/7 Fusion Protein induces differentiation of Bone Marrow Stem cells. J. Cellular Biochem. 112, 3045-3060.

Cited by

  1. Recombinant human BMP-2/-7 heterodimer protein expression for bone tissue engineering using recombinant baculovirus expression system vol.32, pp.2, 2016, https://doi.org/10.7852/ijie.2016.32.2.49