DOI QR코드

DOI QR Code

Immobilization of Yeast Pichia stipitis for Ethanol Production

에탄올 생산을 위한 효모 Pichia stipitis의 고정화

  • Lee, Sang-Eun (Department of Biotechnology, Chungju National University) ;
  • Lee, Ji-Eun (Department of Biotechnology, Chungju National University) ;
  • Kim, Eun-Jin (Department of Biotechnology, Chungju National University) ;
  • Choi, Joon-Ho (Department of Food Science and Biotechnology, Wonkwang University) ;
  • Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Kang, Do-Hyung (Korea Ocean Research & Development Institute) ;
  • Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
  • 이상은 (충주대학교 생명공학과) ;
  • 이지은 (충주대학교 생명공학과) ;
  • 김은진 (충주대학교 생명공학과) ;
  • 최준호 (원광대학교 식품생명공학과) ;
  • 최운용 (강원대학교 생물소재공학전공) ;
  • 강도형 (한국해양연구원) ;
  • 이현용 (강원대학교 생물소재공학전공) ;
  • 정경환 (충주대학교 생명공학과)
  • Received : 2012.01.03
  • Accepted : 2012.03.13
  • Published : 2012.04.30

Abstract

In this study, DEAE-cotton [derivatized by 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl)] was prepared as a carrier for immobilized $Pichia$ $stipitis$ for ethanol production. When cotton was derivatized with 0.5 M DEAE HCl, the yeast cell suspension was adsorbed at 100% of the initial cell $OD_{600}$. The adsorbed yeast cells were estimated to be 101.8 mg-dry cells/g-DEAE-cotton. In particular, when a flask culture using the immobilized yeast cells was conducted in a glucose and xylose-containing medium, the yeast cells on the DEAE-cotton gradually produced ethanol, according to glucose and xylose consumption; the ethanol yield was approximately 0.33 g-ethanol/g-monosaccharide. Because DEAE-cotton was successfully used as a carrier for ethanol production from a glucose and xylose-containing medium, we expect that this bioethanol production process may be used for the bioethanol production process from the hydrolysate of lignocellulosic biomass. All the results of DEAE-cotton were compared with those of DEAE-cellulose as a carrier for immobilization.

Cotton을 효모 세포($Pichia$ $stipitis$)의 고정화 담체로 사용하기 위하여 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl)로 derivatization 시켰다. 0.5 M DEAE HCl로 처리하였을 때, 효모 세포가 완전히 흡착하였으며, 이것은 DEAE-cotton g 당 101.8 mg의 효모 세포가 흡착하는 것이고, DEAE-cellulose에 효모 세포가 흡착하는 양의 약 6배 이상인 것으로 확인되었다. DEAE-cotton을 이용하여 효모 세포를 고정화하고, 이것을 ethanol 생산에 이용하였을 경우, glucose와 xylose가 포함된 배지에서 단당류에 대한 ethanol 수율로 0.33 정도로 ethanol을 생산 할 수 있다는 것을 실험적으로 확인하였다. 이를 이용하여 lignocellulosic bomass의 가수분해물로부터 bioethanol 생산에 이용될 수 있을 것으로 기대되어진다. DEAE-cotton에서 얻어진 결과는 DEAE-cellulose에서 같은 실험을 실시하여 서로 비교 분석하였다.

Keywords

References

  1. Amory, D. E. and Rouxhet, P. G. 1988. Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim. Biophys. Acta 938, 16-70.
  2. Bardi, E. P. and Koutinas, A. A. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J. Agric. Food Chem. 42, 221-226. https://doi.org/10.1021/jf00037a040
  3. Branyik, T., Silva, D. P., Vicente, A. A., Lehnert, R., Silva, J. B. A. e, Dostálek, P. and Teixeira, J. A. 2006. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J. Ind. Microbiol. Biotechnol. 33, 1010-1018. https://doi.org/10.1007/s10295-006-0151-y
  4. El-Hilw, Z. H. 1999. Synthesis of cotton-bearing DEAE, carbamoyethyl, carboxyethyl, and poly(acrylamide) graft for utilization in dye removal. J. Polym. Sci. 73, 1007-1014.
  5. Genisheva, Z., Mussatto, S. I., Oliveira, J. M. and Teixeira, J. A. 2011. Evaluating the potential of wine-making residues and corncobs as support materials for cell immobilization for ethanol production. Ind. Crop. Prod. 34, 979-985. https://doi.org/10.1016/j.indcrop.2011.03.006
  6. Hamaker, K., Rau, S.-L., Hendrickson, R., Liu, J., Ladisch, C. M. and Ladisch, M. R. 1999. Rolled stationary phases: Dimensionally structured textile adsorbents for rapid liquid chromatography of proteins. Ind. Eng. Chem. Res. 38, 865-872. https://doi.org/10.1021/ie970779u
  7. Hebeish, A. and El-Hilw, Z. H. 1998. Preparation of DEAE cotton-g-poly(methacrylic acid) for use as ion exchanger. J. Polym. Sci. 67, 739-745.
  8. Inloes, D. S., Taylor, D. P., Cohen, S. N., Michaels, A. S. and Robertson, C. R. 1983. Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl. Environ. Microbiol. 46, 264-278.
  9. Kumar, S., Singh, S. P., Mishra, I. M. and Adhikari, D. K. 2011. Continuous ethanol production by Kluyveromyces sp. IIPE453 immobilized on bagasse chips in packed bed reactor. J. Petrol. Technol. Altern. Fuels 2, 1-6.
  10. Lee, C. W. and Chang, H. N. 1987. Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol. Bioeng. 29, 1105-1112. https://doi.org/10.1002/bit.260290910
  11. Lee, S. E., Kim, H. J., Choi, W. Y., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2011. Optimal surface aeration rate for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. KSBB J. 26, 311-316. https://doi.org/10.7841/ksbbj.2011.26.4.311
  12. Margaritis, A. and Merchant, F. J. A. 1984. Advances in ethanol production using immobilized cell systems. CRC Crit. Rev. Biotechnol. 1, 339-393.
  13. Moo-Young, M., Lamptey, J. and Robinson, C. W. 1980. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 2, 541-548. https://doi.org/10.1007/BF00134904
  14. Nagashima, M., Azuma, M., Noguchi, S., Inuzuka, K. and Samejima, H. 1984. Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26, 992-997. https://doi.org/10.1002/bit.260260826
  15. Roberts, E. J. and Rowland, S. P. 1973. Removal of mercury from aqueous solutions by nitrogen-containing chemically modified cotton. Environ. Sci. Technol. 7, 552-555. https://doi.org/10.1021/es60078a010
  16. Robyt, J. F. and Mukerjea, R. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251, 187-202. https://doi.org/10.1016/0008-6215(94)84285-X
  17. Silva, D. P., Branyik, T., Dragone, G., Vicente, A. A., Teixeira, J. A. and Silva, J. B. A. e. 2008. High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chem. Pap. 62, 34-41. https://doi.org/10.2478/s11696-007-0076-6
  18. Singh, N. L., Srivastava, P. and Mishra, P. K. 2009. Studies on ethanol production using immobilized cells of Kluyveromyces thermotolerans in a packed bed reactor. J. Sci. Ind. Res. 68, 617-623.
  19. Sungur, S. and Babaoğlu, S. 2005. Synthesis of a new cellulose ion exchanger and use for the separation of heavy metals in aqueous solutions. Sep. Sci. Technol. 40, 2067-2078. https://doi.org/10.1081/SS-200068481
  20. Verbelen, P. J., De Schutter, D. P., Delvaux, F., Verstrepen, K. J. and Delvaux, F. R. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 28, 1515-1525. https://doi.org/10.1007/s10529-006-9132-5
  21. Wada, M., Kato, J. and Chibata, I. 1980. Continuous production of ethanol using immobilized growing yeast cells. Appl. Microbiol. Biotechnol. 10, 275-287. https://doi.org/10.1007/BF00498725
  22. Williams, D. and Munnecke, D. M. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23, 1813-1825. https://doi.org/10.1002/bit.260230809
  23. Yeon, J.-H., Lee, S.-E., Choi, W. Y., Choi, W. S., Kim, I. C., Lee, H.-Y. and Jung, K.-H. 2011. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21, 109-114. https://doi.org/10.4014/jmb.1008.08001
  24. Yeon, J.-H., Lee, S.-E., Choi, W. Y., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21, 323-331.
  25. Yeon, J.-H., Seo, H.-B., Oh, S. H., Choi, W. S., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2010. Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25, 283-288.
  26. Yu, J., Zhang, X. and Tan, T. 2007. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129, 415-420. https://doi.org/10.1016/j.jbiotec.2007.01.039