DOI QR코드

DOI QR Code

Progresses in membrane and advanced oxidation processes for water treatment

  • Khulbe, K.C. (Industrial Membrane Research Institute, Chemical and Biological Engineering Department, University of Ottawa) ;
  • Feng, C.Y. (Industrial Membrane Research Institute, Chemical and Biological Engineering Department, University of Ottawa) ;
  • Matsuura, T. (Industrial Membrane Research Institute, Chemical and Biological Engineering Department, University of Ottawa) ;
  • Ismail, A.F. (Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia)
  • Received : 2011.07.28
  • Accepted : 2012.06.01
  • Published : 2012.07.25

Abstract

At present water crisis is not an issue of scarcity, but of access. There is a growing recognition of the need for increased access to clean water (drinkable, agricultural, industrial use). An encouraging number of innovative technologies, systems, components, processes are emerging for water-treatment, including new filtration and disinfectant technologies, and removal of organics from water. In the past decade many methods have been developed. The most important membrane-based water technologies include reverse osmosis (RO), ultrafiltration (UF), microfiltration (MF), and nanofiltration. Beside membrane based water-treatment processes, other techniques such as advanced oxidation process (AOP) have also been developed. Some unconventional water treatment technology such as magnetic treatment is also being developed.

Keywords

References

  1. Abramovitch, R.A., Huang, B.Z. and Abramovitch, D.A. (1999), "In situ decomposition of PCBs in soil using microwave energy", Chemoshere, 38(10), 2227-2236. https://doi.org/10.1016/S0045-6535(98)00441-X
  2. Achilleos, A., Hapeshi. E., Xekoukoulotakis. N.P., Mantzavinos, D. and Fatta-Kassinos, D. (2010), "Factors affecting diclofenac decomposition in water by UV-A/$TiO_{2}$ photocataysis". Chem. Eng. J., 161(1-2), 53-59. https://doi.org/10.1016/j.cej.2010.04.020
  3. Adewuyi, Y.G. (2005), "Sonochemistry in environmental remediation. Heterogeneous sonocatalytic oxidation processes for the treatment of pollutants in water", Environ. Sci. Technol., 39(10), 8557-8570. https://doi.org/10.1021/es0509127
  4. Agustina, T.E., Ang, H.M. and Vareek, V.K. (2005), "A review of synergistic effect of photocatalysis and ozonization on waste water treatment (review)", J. Photoch. Photobio. C; Photoch. Rev., 6(4), 264-273. https://doi.org/10.1016/j.jphotochemrev.2005.12.003
  5. Almendrala, M.D. (2009, April 2), "Membrane separation processes: A substantial technology for water purification, industrial wastewater recycling and reuse," The Philippine Star (Science and Technology), (http://www.philstar.com/Article.aspex?articleid=454243).
  6. Ameri, A., Gholami, M., Nasseri, N. and Matsuura, T. (2004), "Modification of PES hollow fiber membranes characteristics for more efficient water treatment process", Iranian J. Public health, 33(2), 49-55.
  7. Andreozzi, R., Caprio, V., Insola, A. and Marotta, R. (1999), "Advanced oxidation process (AOP) for water purification and recovery", Catalysis Today, 53(1), 51-59. https://doi.org/10.1016/S0920-5861(99)00102-9
  8. Auffan, M., Shipley, H.J., Yean, S., Kan, A.T., Tomson, M,, Rose, J. and Bottero, J.Y. (2007), "Nanomaterials as Adsorbents", In Environmental Nanotechnology: applications and impacts of nanomaterials, Edts: M.R. Wiesner and J YBottero, McGraw Hill, New York, 2007, Chapter 10.
  9. Ayol, A. (2005), "Enzymatic treatment effects on dewaterability of anaerobically digested bioso;ids-I: Performance evaluation", Process Biochem., 40(7), 2427-2434. https://doi.org/10.1016/j.procbio.2004.09.023
  10. Ayol, A. and Dentel, S.K. (2005), "Enzyme treatment effects on dewaterability of anaerobically digested biosolids-II: Laboratory characterizations of drainability and filterability", Process Biochem., 40(7), 2435-2434. https://doi.org/10.1016/j.procbio.2004.09.024
  11. Bahnemann, D. (2004), "Photocatalytic water treatment: solar energy applications", Solar Energy, 77, 445-459. https://doi.org/10.1016/j.solener.2004.03.031
  12. Baker, J.S. and Judd S.J. (1990), "Magnetic Amelioration of scale formation", Water Resour., 30(2), 247-260.
  13. Bhaumic, D., Majumdar, S., Fan, Q. and Sirkar, K.K. (2004), "Hollow fiber membrane degassing in ultrapure water and microbiocontamination", J. Membrane Sci., 235(1-2), 31-41. https://doi.org/10.1016/j.memsci.2003.12.022
  14. Blanco, H.P., Sublet, J., Nguyen, Q.T. and Schaetzel, P. (2006), "Formation and morphologystudies of different polysulfones-based membranes made by wet phase inversion process", J. Membrane Sci., 283(1-2), 27-37. https://doi.org/10.1016/j.memsci.2006.06.011
  15. Bo, L.L., Quan, X., Wang, X.C. and Chen, S. (2008), "Preparation and characteristic s of carbonsupported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwaveassisted catalytic oxidation", J. Hazardous Materials, 157(1), 179-186. https://doi.org/10.1016/j.jhazmat.2007.12.111
  16. Botes. M. and Cloete, T.E. (2010), "The Potential of Nanofibers and Nanobiocides in Water Purification", In Nanotechnology in Water Treatment Applications. edts. Cloete TE, Kwaadsteniet, MD, Botes, M and Lopez-Romero JM, Caister Academic Press, chapter 3.
  17. Burgess, J.E. and Pletschke, B.I. (2008) "Hydrolytic enzymes in sewage sludge treatment: A mini review", Water SA, 34(3), 343-350.
  18. Buschmann. W.E. (2010), "Semipermeable polymers and method for production same", US2010/0006495 A1
  19. Cao, J.H., Zhu, B.K., Lu, H. and Xu, Y.Y. (2005), "Study on polypropylene hollow fiber based recirculated membrane bioreactor for treatment of municipal wastewater", Desalination, 183(1-3), 431-438. https://doi.org/10.1016/j.desal.2005.02.056
  20. Chang, J.S. (2001), "Recent development of plasma pollution control technology: a critical review", Sci. Technol. Advance Mater., 2(1-4), 571-576. https://doi.org/10.1016/S1468-6996(01)00139-5
  21. Chen, J., Liu, M., Zhang, L., Zhang, J. and Jin, L. (2003), "Application of nano $TiO_{2}$ towards polluted water treatment combined with electro-photochemical method", Water Res., 37(16), 3815-3820. https://doi.org/10.1016/S0043-1354(03)00332-4
  22. Chen, S.F., Zheng, J., Li, LY. and Jiang, S.Y. (2005), "Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insight into nonfouling properties of zwitterionic materials", J. Am. Chem. Soc., 127(41), 14473-14478. https://doi.org/10.1021/ja054169u
  23. Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010), "Recent developments in photocatalytic water treatment technology: A review", Water Res., 44(10), 2997-3027. https://doi.org/10.1016/j.watres.2010.02.039
  24. Cicek, N. (2003), "A review of membrane biorectors and their potential application in the treatment of agricultural wastewater", Can. Biosystems Eng., 45, 6.37-6.49.
  25. Cloete T.E. et al. (editor), Nanotechnology in water treatment application. Caister Academic Press, 2010, ISBN: 978-1-904455-66-0.
  26. Coey, J.M.D. and Cass, S. (2000), "Magnetic water treatment", J. Magnetism Magnetic Materials, 209(1-3), 71-74. https://doi.org/10.1016/S0304-8853(99)00648-4
  27. Comninellis, C., Kapalka, A., Malato, S., Parsons, S.A Poulios, I. and Mantzavinos, D. (2008), "Perspective Advanced oxidation processes for water treatment: advances and trends for R&D", J. Chem. Technol. Biotechnol., 83(6), 769-776. https://doi.org/10.1002/jctb.1873
  28. Davidson, A. (2007) "Increase of biogas production at wastewater treatment plants; addition of urban organic waste and pretreatment of sludge", Water and Environmental Engineering, Department of Chemical Engineering, Diss. Lund University. ISBN: 978-91-7422-143-5.
  29. Davidson, A., Wawrzynczyk, J., Norrlow, O. and Jansen, L.C. (2007a) "Strategies for enzyme dosing to enhance anaerobic digestion of sewage sludge", J. Residuals Sci. Technol., 4(1).
  30. Elimelech, M., Chen, W.H. and Waypa J.J. (1994), "Measuring of zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer", Desalination, 95(3), 269-286. https://doi.org/10.1016/0011-9164(94)00064-6
  31. Esplugas, S., Bila, D.M., Krause, L,G. and Dezotti, M. (2007), "Ozonization and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents", J. Hazard Mater., 149(3), 631-642. https://doi.org/10.1016/j.jhazmat.2007.07.073
  32. Fatta-Kassinos, D., Hapeshi, E., Malato, S., Mantzavinos, D., Rizzo, L. and Xekoukoulotakis, P. (2010), "Removal of xenobiotic compounds from water and waste water by advanced oxidation process' in 'Xenobioticsin the urban water cycle: mass flows, environmental pprocesses, mitigation treatment strategies' Edts. D. Fatta-Kassinos et al. Environmental Pollution, Vol. 16 Springer Science, p387, 2010.
  33. Feng. C., Khulbe K.C., Matsuura, T., Gopal, R., Kaur, S., Ramakrishna, S. and Khayet, M. (2008), "Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane", J. Membrane Sci., 311(1-2), 1-6. https://doi.org/10.1016/j.memsci.2007.12.026
  34. Goddard, J.M. and Hotchkiss, J.H. (2007), "Polymer surface modification for the attachment of bioactive compounds", Progress Polymer Sc., 32(7), 698-725. https://doi.org/10.1016/j.progpolymsci.2007.04.002
  35. Gogate, P.R. and Pandit, A.B. (2004), "A review of imperative technologies for waste water treatment I: oxidation technologies at ambient conditions", Adv. Environ. Res., 8(3-4), 501-551. https://doi.org/10.1016/S1093-0191(03)00032-7
  36. Gurgo e Cirne, D. (2006), "Evaluation of biological strategies to enhance hydrolysis during anaerobic digestion of complex waste", Diss. Lund University, ISBN: 91-89627-4105.
  37. Harder, P., Grunze, M., Dahint, R., Whitesides, G.M. and Laibinis, P.E. (1998), "Molecular Conformation in Oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption", J. Phys. Chem. B, 102(2), 426-436.
  38. Health, 15.11, 2010, http://www.dw-world.de/dw/article/0,,6224975,00.html "Teabag filter cleans water with nanotechnology."
  39. Henmi, M. (2010), "Sub-nanometer pore in RO membrane was observed by PALS." Polymer Preprints, Japan, 59, 34, (Preprints of 28th Annual Meeting, the Membrane Society of Japan, 2006, p. 33).
  40. Hermann, J.M. (1999), "Heterogeneous photocatalysis:fundamental and applications to the removal of various types of aqueous pollutants", Catalysis Today, 53, 115-129. https://doi.org/10.1016/S0920-5861(99)00107-8
  41. Holmlin, R.E., Chen, X.X., Chapman, T.G., Takayama, S. and Whitessides G.M. (2001), "Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer", Langmuir, 17(9), 2841-2850. https://doi.org/10.1021/la0015258
  42. Hong, S. and Elimelech M (1997), "Chemical and physical asapects of organic matter (NOM) fouling of nanofiltration membranes", J. Membrane Sci., 132(2), 159-181. https://doi.org/10.1016/S0376-7388(97)00060-4
  43. http://www.nano.org.uk/news/774, "Novel Tea bag cleans highly polluted water."
  44. Isogami, H., Miyabayashi, S. and Morita, M. (2011) "Magnetic separation apparatus and waste water treatment apparatus", Patent application No. 20110215041, Publication date: 09/08/2011.
  45. Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W. and Miles, N.J. (2002), "Microwave heatingapplications in environmental engineering-A review", Resources, Conservation Recycling, 34(2), 75-90. https://doi.org/10.1016/S0921-3449(01)00088-X
  46. Kappe, C.O. (2004), "Controlled microwave heating in modern organic synthesis", Angew. Chem. Int. Ed., 43(46), 6250-6284. https://doi.org/10.1002/anie.200400655
  47. Karam, J. and Nicell A.J. (1997), "Potential applications of enzymes in waste water treatment", J. Chem. Tech. Biotechnol, 69, 141-153. https://doi.org/10.1002/(SICI)1097-4660(199706)69:2<141::AID-JCTB694>3.0.CO;2-U
  48. Kasher, R. (2009), "Membrane-based water treatment technologies: recent achievements and new challenges for a chemist", Bulletin Israel Chem. Soc., 24, 10-18.
  49. Kesting, R. (1971), "Synthetic polymeric membranes, McGrawHill, New-York"
  50. Khayet, S. M., Payo, G., Carmen, M. and Carmen, A.S. (2011), "Membranes plans nano-estructururades para la destilacion en membranas con contactodirect", W/2011/11/443.]
  51. Klavarioti, M., Mantzavinos, D. and Kassinos, D, (2009), "Removal of residual pharmaceuticals from aqueous system by advanced oxidation processes", Environ. Intel, 35(2), 402-417. https://doi.org/10.1016/j.envint.2008.07.009
  52. Kronenberg, K.J. (1985), "Experimental evidence for effects of magnetic fields on moving water", IEEE T. Magn., 21(5), 2059-2061. https://doi.org/10.1109/TMAG.1985.1064019
  53. Kumar, M., Grzelakowski, M, Zilles, J., Clark, M. and Meier, W. (2007), "Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z", PNAS, 104(52), 20719-20724. https://doi.org/10.1073/pnas.0708762104
  54. Kwak, S.Y., Jung, S.G. and Kim, S.H. (2001), "Structure-motion-performance relationship of flux-enhanced reverse osmosis (RO) membranes composed of aromatic membranes composed of aromatic polyamide thin films", Environ. Sci. Technol., 35(21), 4334-4340. https://doi.org/10.1021/es010630g
  55. Levec, J. and Pintar, A. (2007), "Catalytic wet-air oxidation processes: A review", Catal. Today, 124(3-4), 172-184: https://doi.org/10.1016/j.cattod.2007.03.035
  56. Lewis, S.R., Datta, S., Gui, M., Huggins, F.E., Daunert, S., Bachas, L. and Bhattacharya, D. (2011), "Reactive nanostructured membranes for water purification", PNAS, 108(21), 8577-8582. https://doi.org/10.1073/pnas.1101144108
  57. Li, B. and Sirkar, K.K. (2004), "Novel membrane and Device for direct contact membrane distillation based desalination process", Ind. Eng. Chem. Res., 43(17), 5300-5309. https://doi.org/10.1021/ie030871s
  58. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, V., Li, D. and Alvarez P.J.J. (2008), "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications", Water Res., 42(18), 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015
  59. Lo, S.L., Wang, Y.L. and Hu, C.Y. (2007), "High turbidity reduction during the stormy period by applied magnetic field", J. Environ. Eng. Manag., 17(5), 365-370.
  60. Loeb, S, and Sourirajan, S. (1964), "Highflow porous membranes for separating water from saline solutions", US 3,133,132.
  61. Lonsdale, H.K. (1972), "Theory and Practice of reverse osmosis ultrafiltration," In Industrial Processing with Membranes. eds. Lacey RE and Loeb, S, Wiley-Interscience, New York, p 123.
  62. Mavronikola, C., Demetriou, M., Hapeshi, E., Partassides, D., Michael, C. Mantzavinos, D, and Kassinos, D. (2009), "Mineralisation of the anttbiotic amoxicillin in pyre and surface waters by artificial UVA-and sunlightinduced Fenton oxidation", J. Chem. Technol. Biotechnol., 84, 1211-1217. https://doi.org/10.1002/jctb.2159
  63. Mitsuhashi, K., Yoshizaki, R., Okada, H., Ohara, T. and Wada, H. (2003), "Purification of endocrine disrupterpolluted water using high temperature superconducting HGMS", Physical Separation Sci. Eng., 12(4), 205-213. https://doi.org/10.1080/14786470310001649333
  64. Mosqueda-Jimenez, D.B., Narbaitz, R.N. and Matsuura, T. (2004), "Impact of membrane surface modification on the treatment of surface water", J. Environ. Eng., 130(12), 1450-1459. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:12(1450)
  65. Mulder M. (1992), "Basic Principles of Membrane Technology", second ed. Kluwer Academic Publishers, The Netherlands.
  66. Naddeo, V., Belgiorno, V., Kassinos, D., Mantzavinos, D. and Meric, S. (2010), "Ultrasonic degradation, mineralization and detoxification of diclofenac in water: optimization of operating parameters", Ultrasonics Sonochemistry, 17(1), 79-185.
  67. Nicell, J.A. (2003), "Enzymatic treatment of waters and wastes", Environmental Science and Pollution Control, series 26(Chemical Degradation for Wastes and Pollutants), 26, 423-475.
  68. Oder, R.R. (2005), "Emulsion breaking with magnetic fields", American Filtration Society, 18th Annual Conference, Atlanta, GA, April 10-13, 2005.
  69. Ollis, D.F. (2000), "Photocatalytic purification and remediation of contaminated air and water", C R Acad Sci Paris, Serie IIc/Chemistry, 3, 405-411.
  70. Oturan, M.A., Peiroten, J., Chartrin, P. and Acher, A.J. (2000), "Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method", Environ. Sci. Technol., 34(16), 3474-3479. https://doi.org/10.1021/es990901b
  71. Peng, W. and Escobar, I.C. (2005), "Evaluation of factors influencing membrane performance", Environ. Progress, 24(4), 392-399. https://doi.org/10.1002/ep.10109
  72. Pikaev, A. (2001), "Mechanism of the radiation purification of polluted water and waste water", High Energy Chemistry, 35(5), 313-318. https://doi.org/10.1023/A:1011926905064
  73. Qtaishat M.R. (2008), "Design of Novel Membranes for Desalination by Direct Contact Membrane Distillation", Ph.D. Department of Chemical and Biological Engineering, University of Ottawa.
  74. Rad, S.A.M., Mirbagheri, S.A. and Mohammadi, T. (2009), "Using reverse osmosis membrane for chromium removal from aqueous solution". World Academy of Sciences and Technology, 57, 348-352.
  75. Rassaei, L., Sillanpaa, M., Bonne, M. and Marken, F. (2007), "Carbon nanofiber-polystyrene composite electrodes for electroanalytical processes", Electroanalysis, 19(14), 1461-1466. https://doi.org/10.1002/elan.200703887
  76. Ray, A.K. and Beenackers, A.C.M. (1998), "Development of a new photocatalytic reactor for water purification", Catalysis Today, 40(1), 73-83. https://doi.org/10.1016/S0920-5861(97)00123-5
  77. Redondo, J., Busch, M. and De Witte, J.P. (2003), "Boron removal from seawater using FILMTECTM high rejection SWRO membranes", Desalination, 156(1-3), 229-238. https://doi.org/10.1016/S0011-9164(03)00345-X
  78. Reid. C.E. and Breton. E. (1959), "Water and ion flow across cellulosic membranes", J. Appl. Polym. Sci., 1(2), 133-143. https://doi.org/10.1002/app.1959.070010202
  79. Riley. R.I., Gardner, J.O. and Merten, U. (1964), "Cellulose acetate membranes: Electron Microscopy of structure", Science, 143(3608), 801-803. https://doi.org/10.1126/science.143.3608.801
  80. Riley, R.L., Lonsdale, H.K. and Lyons, C.R. (1971), "Composite membrane for sea water desalination by reverse osmosis", J. Appl. Polymer Sci., 15(2), 1267-1276. https://doi.org/10.1002/app.1971.070150520
  81. Ritchie. S.M.C. (2009), "Enhanced dechlorination of trichloroethylene by membrane supported and Biometallic Nanoparticles", In 'Nanotechnology applications for clean water. Eds. N. Savage, M. Diallo, J. Dunecan, A. Street, R. Suntich, William Andrew Inc., 13 Eaton Ave., Norwich, NY, 13815, 2009, pp 293.
  82. Roman, H.J., Burgess, J.E. and Pletschke, B.I. (2006), "Enzyme treatment to decrease solids and improve digestion of primary sewage sludge," Afr. J. Biotech, 5(10), 963-967.
  83. Ryu, I. and Choi. W. (2008), "Substrate-specific photocatlytic activitie of $TiO_{2}$ and multicavity test for water treatment application," Environ. Sci. Technology, 42, 294-300. https://doi.org/10.1021/es071470x
  84. Sang, Y., Li, F., Gu, Q., Liang, C. and Chen, J. (2008), "Heavy metal-contaminated ground water treatment by a novel nanofiber membrane", Desalination, 223(1-3), 349-360. https://doi.org/10.1016/j.desal.2007.01.208
  85. Savage, N. and Diallo, M.S. (2005), "Nanmaterials and water purification: opportunities and challenges", J. Nanoparticles Res., 7(4-5), 331-342. https://doi.org/10.1007/s11051-005-7523-5
  86. Sesay, M.L., zcengis, G. and Dilek, S.F. (2006), "Enzymatic extraction of activated sludgeextracellular polymers and implications on bioflocculation", Water Res., 40(7), 1359-1366. https://doi.org/10.1016/j.watres.2006.01.045
  87. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452, 301-310. https://doi.org/10.1038/nature06599
  88. Shi, Q., Su, Y., Zhu, S., Li, C., Zhao, Y. and Jiang Z.A. (2007), "Facile method for synthesis of pegylated polyethersulfone and itsapplication in fabrication of antifouling ultrafiltration membrane", J. Membrane Sci., 303(1-2), 204-212. https://doi.org/10.1016/j.memsci.2007.07.009
  89. Slaughter, S. (2010), "Improving the sustainability of water treatment systems: Opportunities for innovation", Solutions, 1(3), 42-49.
  90. Strathmann, H. (2001), "Membrane separation process: current relevance and future opportunities", AIChE J., 47(5), 1077-1087. https://doi.org/10.1002/aic.690470514
  91. Susanto, H., Balakrishnan, M. and Ulbricht, M. (2007a), "Via surface functionalization by photograft copolymerization to low-fouling polyethersulfone-based ultrafiltration membranes", J. Membrane Sci., 288(1-2), 157-167. https://doi.org/10.1016/j.memsci.2006.11.013
  92. Susanto, H. and Ulbricht, M. (2006), "Performance of surface modified polyethersulfone membranes for ultrafiltration of aquatic humic substances", Desalination, 199, 384-386. https://doi.org/10.1016/j.desal.2006.03.087
  93. Susanto, H. and Ulbricht, M. (2007b), "Photografted thin polymer hydrogel layers on PES ultrafiltration membranes: characterization, stability, and influence on separation performance", Langmuir, 23(14), 7818-7830. https://doi.org/10.1021/la700579x
  94. Tarabara, V.V. (2009), "Multifunctional nanomaterial-enabled membranes for water treatment", In 'Nanotechnology applications for clean water. Eds. N. Savage, M. Diallo, J. Dunecan, A. Street, R. Suntich, William Andrew Inc., 13 Eaton Ave., Norwich, NY, 13815, 2009, pp 59.
  95. Theron, J., Walker, A.J. and Cloete, T. (2010), "Nanotechnology and water treatment: applications and emerging opportunities", In 'Nanotechnology in water treatment Applications, Edts. T.E. Cloete, M. Kwaadsteniet, M. Botes, J.M, Lopez-Romero, Caister Academic Press, 2010.
  96. Ullrich, M. (editor), Bacterial polysaccharides: "Current Innovationand Future Trends", Caister Academic Press. ISBN 978-1-904455-45-5. 2009.
  97. Vilhunen, S. and Sillanpaa, M. (2010), "Recent developments in photochemical and chemical AOPs in watertreatment: a mini review", Rev. Environ. Sci. Biotechnol., 9(4), 323-330. https://doi.org/10.1007/s11157-010-9216-5
  98. Wagner, M. and Nicell, J.A. (2003), "Impact of the presence of solids on peroxidase-catalysed treatment of aqueous phenol", J. Chem. Tech. Biotechnol., 78, 694-702. https://doi.org/10.1002/jctb.754
  99. Wang, Y.Q., Su, Y.L., Sun, Q., Ma, X.L. and Jiang, Z.Y. (2006), "Generation of anti-biofoulingultrafiltration membrane surface by blending novel branched amphiphilic polymers with polyethersulfone", J. Membrane Sci., 286, 228-236. https://doi.org/10.1016/j.memsci.2006.09.040
  100. Wawrzynczyk, J., Recktenwald, M., Norrlow, O. and Dey, E.S. (2008), "The function of cat-ion binding agents in the enzymatic treatment of municipal sludge", Water Res., 42(6-7), 1555-1562. https://doi.org/10.1016/j.watres.2007.11.004
  101. Wenten, I.G. (2002), "Recent developmentin membrane science and its industrial application", Songklanakarin J. Sci. Technol. (Membrane Sci. Tech.)., 24, 1009-1024.
  102. World Health Organization (2008). Safer Water, Better Health: Costs, benefits, and sustainability of interventions to protect and promote health.
  103. Xia, L.X., Lu, S. and Cao, G.Y. (2003), "Demulsification of emulsions exploited by enhanced oil recovery system", Separation Sci. Technology, 38(16), 4079-4094. https://doi.org/10.1081/SS-120024720
  104. Yamaguchi, T., Suzuki, T., Kai, T. and Nakao, S.I. (2001), "Hollow-fiber-type pore-filling membranes made by plasma-graft polymerization for the removal of chlorinated organics from water", J. Membrane Sci., 194(2), 217-228. https://doi.org/10.1016/S0376-7388(01)00545-2
  105. Yan, S., Miyanaga, K., Xing, X-H. and Tanji, Y. (2008), "Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge", Biotechem. Eng. J., 39(3), 598-603. https://doi.org/10.1016/j.bej.2007.12.002
  106. Yang, S., Wang, P., Yang, X., Wei, G., Zhang, W. and Shan, L. (2009), "A novel advanced oxidation process to degrade organic pollutants in waste water: Microwave-activated persulfate oxidation", J. Environ Sci., 21(9), 1175-1180. https://doi.org/10.1016/S1001-0742(08)62399-2
  107. Yoon, K., Kim, K., Wang, F., Fang, D., Hsiao, B.S. and Chu, B. (2006), "High flux ultrafiltration membranes based on electrospun nanofibers PAN scaffolds and chitosan coating", Polymer, 47(7), 2434-2441. https://doi.org/10.1016/j.polymer.2006.01.042
  108. Yoshida, W and Cohen, Y. (2004), "Removal of methyl tert-butyl ether from water by pervaporation using ceramic-supported polymer membranes", J. Membrane Sci., 229(1-2), 27-32. https://doi.org/10.1016/j.memsci.2003.09.021
  109. Yu, G.H., He, P.J., Shao, L.M. and Zhu, Y.S. (2008), "Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment", Water Res., 42(8-9), 1925-1934. https://doi.org/10.1016/j.watres.2007.11.022
  110. Zhang, J., Fu, D., Xu, Y. and Liu, C, (2010), "Optimization of parameters on photo-catalytic degradation of chloramphenicol using $TiO_{2}$ as photo-catalyst by response surface methodology," J. Environ. Sci., 22(8), 1281-1289. https://doi.org/10.1016/S1001-0742(09)60251-5
  111. Zhang, L., Kanki, T., Sano, N. and Toyoda, A. (2003), "Development of $TiO_{2}$ photocatalyst reaction for water purification", Sep. Pur. Tech., 31(1), 105-110. https://doi.org/10.1016/S1383-5866(02)00157-0
  112. Zhang, X., Du, A.J., Lee, P., Sun, D.D. and Leckie, J.O. (2008a), "Grafted multifunctional titanium dioxide nanotube membrane: separation and photodegradation of aquatic pollutant", Appl. Catal. B: Environ, 84(1-2), 262-267. https://doi.org/10.1016/j.apcatb.2008.04.009
  113. Zhang, X., Du. A.J., Lee, P., Sun, D.D. and Leckie, J.O. (2008), "$TiO_{2}$ nanowire membrane for concurrent filtration and photocalytic oxidation of humic acid in water", J. Membrane Sci., 313(1-2), 44-51. https://doi.org/10.1016/j.memsci.2007.12.045

Cited by

  1. Preparation and characterization of a novel hydrophilic poly(vinylidene fluoride) filtration membrane incorporated with Zn–Al layered double hydroxides vol.39, 2016, https://doi.org/10.1016/j.jiec.2016.05.006
  2. A thermothickening polymer as a novel flocculant for oily wastewater treatment pp.1520-5754, 2020, https://doi.org/10.1080/01496395.2018.1563161
  3. Dissolved organic matter characteristics and bacteriological changes during phosphorus removal using ladle furnace slag vol.9, pp.3, 2012, https://doi.org/10.12989/mwt.2018.9.3.181
  4. Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment vol.11, pp.2, 2020, https://doi.org/10.12989/mwt.2020.11.2.097
  5. A column study of effect of filter media on the performance of sand filter vol.11, pp.4, 2012, https://doi.org/10.12989/mwt.2020.11.4.247
  6. Reuse potential of spent RO membrane for NF and UF process vol.11, pp.5, 2012, https://doi.org/10.12989/mwt.2020.11.5.323
  7. Optimized Pretreatment of Non-Thermal Plasma for Advanced Sewage Oxidation vol.17, pp.20, 2012, https://doi.org/10.3390/ijerph17207694
  8. Performance prediction of flat sheet commercial nanofiltration membrane using Donnan-Steric Pore Model vol.12, pp.2, 2012, https://doi.org/10.12989/mwt.2021.12.2.059