DOI QR코드

DOI QR Code

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita (Department of Applied Mechanics, Indian Institute of Technology Delhi) ;
  • Nath, Y. (Department of Applied Mechanics, Indian Institute of Technology Delhi)
  • Received : 2010.11.30
  • Accepted : 2012.03.18
  • Published : 2012.04.25

Abstract

Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.

Keywords

References

  1. Aymerich, F., Dore, F. and Priolo, P. (2009), "Simulation of multiple delaminations in impacted cross ply laminates using a finite element model based on cohesive interface elements", Compos. Sci. Tech., 69, 1699-1709. https://doi.org/10.1016/j.compscitech.2008.10.025
  2. Balamurugan, V. and Narayanan, S. (2001), "Shell finite element for smart piezoelectric composite plate/shell structures and its applications to the study of active vibration control", Finite Elem. Anal. D., 37, 713-738. https://doi.org/10.1016/S0168-874X(00)00070-6
  3. Bathe, K.J. (2001), Finite Element Procedures, Prentice-Hall of India Private Limited, New Delhi.
  4. Chandrashekhara, K. and Agarwal, A.N. (1993), "Active vibration control of laminated composite plates using piezoelectric devices: A finite element approach", J. Int. Mat. Syst. Struct., 4, 496-508. https://doi.org/10.1177/1045389X9300400409
  5. Chattopadhyay, A., Kim, H.S. and Ghoshal, A. (2004), "Nonlinear vibration analysis of smart composite structures with discrete delamination using a refined layerwise theory", J. Sound Vib., 273, 387-407. https://doi.org/10.1016/S0022-460X(03)00561-3
  6. Ghoshal, A., Kim, H.S., Chattopadhyay, A. and Prosser, W.H. (2005), "Effect of delamination on transient history of smart composite plates", Finite Elem. Anal. D., 41, 850-874. https://doi.org/10.1016/j.finel.2004.10.006
  7. Gim, C.K. (1994), "Plate finite element modeling of laminated plates", Comput. Struct., 52, 157-168. https://doi.org/10.1016/0045-7949(94)90267-4
  8. Hwang, W.S. and Park, H.C. (1993), "Finite element modeling of piezoelectric sensors and actuators", AIAA J., 31, 930-937. https://doi.org/10.2514/3.11707
  9. Ju, F., Lee, H.P. and Lee, K.H. (1995), "Finite element analysis of free vibration of delaminated composite plates", Compos. Eng., 5, 195-209. https://doi.org/10.1016/0961-9526(95)90713-L
  10. Kim, H.S., Chattopadhyay, A. and Ghoshal, A. (2003), "Characterization of delamination effect on composite laminates using a new generalized layerwise approach", Comput. Struct., 81, 1555-1566. https://doi.org/10.1016/S0045-7949(03)00150-0
  11. Kim, H.S., Ghoshal, A., Kim, J. and Choi, S.B. (2006), "Transient analysis of delaminated smart composite structures by incorporating the Fermi-Dirac distribution function", Smart Mater. Struct., 15, 221-231. https://doi.org/10.1088/0964-1726/15/2/001
  12. Kim, J.S. and Cho, M. (2003), "Efficient higher order shell theory for laminated composites with multiple delaminations", AIAA J., 41, 941-950. https://doi.org/10.2514/2.2031
  13. Kumar, R., Mishra, B.K. and Jain, S.C. (2008), "Static and dynamic analysis of smart cylindrical shell", Finite Elem. Anal. D., 45, 13-24. https://doi.org/10.1016/j.finel.2008.07.005
  14. Lam, K.Y., Peng, X.Q., Liu, G.R. and Reddy, J.N. (1997), "A finite element model for piezoelectric composite laminates", Smart Mater. Struct., 6, 583-591. https://doi.org/10.1088/0964-1726/6/5/009
  15. Lammering, R. (1991), "The application of a finite shell element for composite containing piezoelectric polymers in vibration control", Comput. Struct., 41, 1101-1109. https://doi.org/10.1016/0045-7949(91)90305-6
  16. Moita, J.M.S., Correia, I.F.P., Mota Soares, C.M. and Mota Soares, C.A. (2004), "Active control of adaptive laminated structures with bonded piezoelectric sensors and actuators", Comput. Struct., 82, 1349-1358. https://doi.org/10.1016/j.compstruc.2004.03.030
  17. Oh, J., Cho, M. and Kim, J.S. (2005), "Dynamic analysis of composite plate with multiple delaminations based on higher order zigzag theory", Int. J. Solid Struct., 42, 6122-6140. https://doi.org/10.1016/j.ijsolstr.2005.06.006
  18. Parhi, P.K., Bhattacharyya, S.S. and Sinha, P.K. (2001), "Hygrothermal effects on the dynamic behavior of multiple delaminated composite plates and shells", J. Sound Vib., 248, 195-214. https://doi.org/10.1006/jsvi.2000.3506
  19. Park, T. and Lee, S.Y. (2009), "Parametric instability of delaminated composite spherical shells subjected to inplane pulsating forces", Compos. Struct., 91, 196-204. https://doi.org/10.1016/j.compstruct.2009.05.001
  20. Park, T., Lee, S.Y. and Voyiadjis, G.Z. (2009), "Finite element vibration analysis of composite skew laminates containing delaminations around quadrilateral cutouts", Composites: Part B, 40, 225-236.
  21. Ray, M.C. and Reddy, J.N. (2005), "Active control of laminated cylindrical shells using piezoelectric fiber reinforced composites", Compos. Sci. Tech., 65, 1226-1236. https://doi.org/10.1016/j.compscitech.2004.12.027
  22. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Second Edition, Boca Raton, Florida.
  23. Samanta, B., Ray, M.C. and Bhattacharyya, R. (1996), "Finite element model for active control of intelligent structures", AIAA J., 34, 1885-1893. https://doi.org/10.2514/3.13322
  24. Sanders, J.L. (1959), "An improved first approximation theory for thin shells", NASA TR R-24.
  25. Shen, M.H.H. and Grady J.E. (1992), "Free vibrations of delaminated beams", AIAA J., 30, 1361-1370. https://doi.org/10.2514/3.11072
  26. Tiersten, H.F. (1969), Linear Piezoelectric Plate Vibrations, Plenum Press, New York.
  27. Tzou, H.S. and Tseng, C.I. (1990), "Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: A piezoelectric finite element approach", J. Sound Vib., 138, 17-34. https://doi.org/10.1016/0022-460X(90)90701-Z
  28. Vel, S.S. and Baillargeon, B.P. (2005), "Analysis of static deformation, vibration and active damping of cylindrical composite shells with piezoelectric shear actuators", J. Vib. Acoust., 127, 395-407. https://doi.org/10.1115/1.1898337
  29. Wang, S.Y., Quek, S.T. and Ang, K.K. (2001), "Vibration control of smart piezoelectric composite plates", Smart Mater. Struct., 10, 637-644. https://doi.org/10.1088/0964-1726/10/4/306
  30. Zhu, J.F., Gu, Y. and Tong, L. (2005), "Formulation of reference surface element and its applications in dynamic analysis of delaminated composite beams", Compos. Struct., 68, 481-490. https://doi.org/10.1016/j.compstruct.2004.04.014

Cited by

  1. Interfacial fracture analysis of a piezoelectric–polythene composite cylindrical shell patch under axial shear vol.225, pp.2, 2014, https://doi.org/10.1007/s00707-013-0982-3
  2. Telescopic columns as a new base isolation system for vibration control of high-rise buildings vol.3, pp.6, 2012, https://doi.org/10.12989/eas.2012.3.6.853
  3. Bending Response of Cross-Ply Laminated Composite Plates with Diagonally Perturbed Localized Interfacial Degeneration vol.2013, 2013, https://doi.org/10.1155/2013/350890
  4. Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.889
  5. Optimal control and design of composite laminated piezoelectric plates vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1177
  6. Acoustic Radiation of a Cylindrical Piezoelectric Power Transformer vol.80, pp.6, 2013, https://doi.org/10.1115/1.4023979
  7. Spectral finite element method for wave propagation analysis in smart composite beams containing delamination vol.92, pp.3, 2012, https://doi.org/10.1108/aeat-02-2019-0026
  8. On ultrasound propagation in composite laminates: advances in numerical simulation vol.129, pp.None, 2022, https://doi.org/10.1016/j.paerosci.2021.100791