DOI QR코드

DOI QR Code

Development of Novel Cosmetic Formulations using Foams

기포를 이용한 차별화된 화장품 제형 개발

  • Cho, Wan-Goo (College of Alternative Medicine, Jeonju University)
  • 조완구 (전주대학교 대체의학대학 기초의과학과)
  • Received : 2011.11.17
  • Accepted : 2011.12.20
  • Published : 2012.03.30

Abstract

In this review, the use of air bubbles in the pharmaceutical and cosmetic formulations was discussed. The foam bubbles show different characteristics depending on the foaming agents and foam generating devices. The foam bubbles are generated in the form of dispersion of gas bubbles in a solvent. The assessment of stability and rheological properties of bubbles are the starting point for the formulation to be used. Pharmaceutical and cosmetic uses of bubbles are substantially growing, and the foam formulations of drugs can be used for rectal, vaginal, and dermal symptoms. The foam formulation is used in hair mousse, makeup foundation, and sunscreen cosmetics in basic cosmetics. Recently, a lot of studies and patents have been filed in stabilization of active ingredients and delivery of the active ingredient in terms of foam formulations. In the future, foam formulations are expected to be used as novel cosmeceutical formulations.

본 총설에서는 기포의 화장품 이용에 대해서 논의하고자 하였다. 기포의 생성은 기포형성제와 기포 생성 장치 등을 이용하며 생성된 기포는 다양한 특성을 나타낸다. 기포는 기체의 용매에 대한 분산 형태로 발생된다. 기포의 안정성과 유변학적인 성질 등을 평가하는 것은 기포를 제형으로 이용하기 위한 출발점이다. 기포의 의약품과 화장품에 대한 이용은 점차 증가 추세에 있다. 의약품의 경우 기포 제형은 직장(rectal), 질(vaginal) 및 피부(dermal)용으로 대별될 수 있으며 화장품 영역의 경우 기포 제형은 모발 및 메이크업 영역에서는 헤어 무스, 파운데이션 등에서 이용되고 있으며 기초화장품에서는 자외선 차단 화장품에 이용되고 있다. 최근 유효성분의 안정화 및 유효성분의 피부 전달 측면에서 많은 연구와 특허가 출원되고 있어 향후 기능성화장품의 새로운 제형으로 활용이 기대된다.

Keywords

References

  1. P. D. I. Fletcher, Specialist surfactants, ed. I. D. Robb, 104, Blackie, London (1997).
  2. A. S. Yoshimura, Ph. D. Dissertation, Princeton Univ., NJ, USA (1988).
  3. R. S. Hansen and E. J. Derderian, Problems in foam origin, drainage and rupture, Proceedings of a Symposium organized by the Society of Chemical Industry, Brunel University, 1 (1976).
  4. A. Arzhavitina and H. Steckel, Foams for pharmaceutical and cosmetic application, Int. J. Pharm., 394, 1 (2010).
  5. D. Exerova, K. H. R. Khristov, and I. Penev, Some techniques for the investigation of foam stability, Proceedings of a Symposium organized by the Society of Chemical Industry, Brunel University, 109 (1976).
  6. S. Friberg and H. Saito, Foam stability and association of surfactants, Proceedings of a Symposium organized by the Society of Chemical Industry, Brunel University, 33 (1976).
  7. K. Oungbho, Ph. D Dissertation, Christian Albrecht Univ., Kiel, Germany (1997).
  8. R. Dautov, K. Kornev, and V. Mourzenko, Foam patterning in porous media, Phys. Rev. E., 56(6), 6929 (1997). https://doi.org/10.1103/PhysRevE.56.6929
  9. L. Piazza, J. Gigli, C. Rojas, D. Ballabio, R. Todeschini, and P. Tripaldi, Dairy cream response in instrumental texture evaluation processed by multivariate analysis, Chemom. Intell. Lab. Syst., 96, 258 (2009). https://doi.org/10.1016/j.chemolab.2009.02.011
  10. P. D. Patel, A. M. Stripp, and J. C. Fry, Whipping test for the determination of foaming capacity of protein: a collaborative study, Int. J. Food Sci. Tech., 23, 57 (1988).
  11. S. Poole, The foam-enhancing properties of basic biopolymers, Int. J. Food Sci. Tech., 24, 121 (1989).
  12. K. J. Cho, W. K. Cho, J. P. Lee, M. S. Kim, J. S. Kim, and S. J. Hwang, Evaluation of glyceryl monooleate (GMO) w/o emulsion stability by using Turbiscan (R) LAB, J. Kor. Pharm. Sci., 39(4), 249 (2009).
  13. J. P. Krause, Foams: Theory, Measurements, and Applications, eds. R. K. Prudhomme and S. A. Khan, 596, Marcel Dekker, NY, Basel, Hong Kong (1996).
  14. G. A. Nowak, Die kosmetische Praparate. Verlag fur chemische Industrie, ed. H. Ziolkowsky, Augsburg (1969).
  15. T. Engels, W. von Rybinski, and P. Schmiedel, Structure and dynamics of surfactant-based foams, Prog. Colloid. Polym. Sci., 111, 117 (1998). https://doi.org/10.1007/BFb0118120
  16. H. Wehle, A method for the measurement of foam strength of toothpastes and tooth soaps (powders) and establishment of a foam strength number, Pharmazie, 11, 135 (1957).
  17. Y. Zhao, M. B. Brown, and S. A. Jones, Pharmaceutical foams: are they the answer to the dilemma of topical nanoparticles, Nanomedicine, 6, 227 (2010). https://doi.org/10.1016/j.nano.2009.08.002
  18. Eur. Patent 1826261 (2008).
  19. X. Huang, H. Tanojo, J. Lenn, C. H. Deng, and L. Krochmal, A novel foam vehicle for delivery of topical corticosteroids, J. Am. Acad. Dermatol., 53(1), s26 (2005).
  20. C. H. Prudon, J. M. Haigh, C. Surber, and E. Smith, Foam drug delivery in dermatology. Beyond the scalp, Am. J. Drug Deliv., 1, 71 (2003). https://doi.org/10.2165/00137696-200301010-00006
  21. T. S. Housman, B. G. Mellen, S. R. Rapp, A. B. Fleischer, and S. R. Feldman, Patients with psoriasis prefer solutions and foam vehicles: a quantitative assessment of vehicle performance, Cutis, 70, 327 (2002).
  22. World Patent 9,912,521 (1999).
  23. U. S. Patent 6,946,120 (2005).
  24. U. S. Patent 69,779 (2008).
  25. U. S. Patent 281,755 (2005).
  26. U. S. Patent 188,449 (2006).
  27. U. S. Patent 292,461 (2007).
  28. U. S. Patent 275,221 (2006).
  29. U. S. Patent 152,596 (2008).
  30. U. S. Patent 186,147 (2005).
  31. U. S. Patent 7,222,754 (2007).
  32. U. S. Patent 7,396,019 (2008).
  33. U. S. Patent 154,402 (2007).
  34. U. S. Patent 75,407 (2005).
  35. U. S. Patent 22,143 (2007).
  36. U. S. Patent 233,727 (2006).
  37. U. S. Patent 6,620,855 (2003).
  38. U. S. Patent 253,973 (2008).
  39. U. S. Patent 6,126,920 (2000).
  40. World Patent 8,397 (2008).
  41. U. S. Patent 7,029,659 (2006).
  42. U. S. Patent 6,730,288 (2004).