Change of Organic Rice Yield as Affected by Surface and Broadcast Fertilizer Applications

유기질비료의 표층 및 전층시비에 따른 벼 수량 변화

  • 김현우 (전라남도농업기술원) ;
  • 최현석 (국립농업과학원 유기농업과) ;
  • 김병호 (전라남도농업기술원) ;
  • 김홍재 (전라남도농업기술원) ;
  • 최경주 (전라남도농업기술원) ;
  • 정덕영 (충남대학교 생물환경화학과) ;
  • 이연 (국립농업과학원 유기농업과) ;
  • 박광래 (국립농업과학원 유기농업과) ;
  • 정석규 (경희대학교 한방재료가공학과)
  • Received : 2011.07.18
  • Accepted : 2012.03.26
  • Published : 2012.03.31

Abstract

This study was investigated to evaluate the effects of fertilizer application of surface and broadcast for rice culture on the soil chemical, physical, and microbial properties as well as growth and yield of rice. The application was made with 'Dongjin 1' rice at Jeollanam-do Agricultural Research & Extension Services from 2008 to 2010. Soil organic matter and cation concentrations were increased by surface and broadcast applications, respectively. Plots treated by surface application tended to be higher seasonal N-mineralization rate in the organic fertilizer and seasonal soil organic matter than those of broadcast application. Soil physical properties seemed to be improved by the broadcast application, and soil microbial properties were increased by the surface application. Surface application increased 5% of rice yield compared to that of broadcast.

벼 유기재배를 하는데 있어서 전층과 표층 시비방법에 따른 토양의 화학성, 물리성, 미생물상, 그리고 벼의 생육과 수량에 대해서 어떠한 영향을 미치는 지를 구명하기 위해서 수행하였다. 2008년부터 2010년까지 3년간에 걸쳐서 전라남도농업기술원 시험포장(논, 양토)에서 조사하였고 시험품종은 '동진1호'를 이용하였다. 토양유기물은 표층시비에서 높았고 토양양이온은 전층시비에서 높았다. 유기질비료의 질소 무기화율은 표층시비에서 높았고 잔존하는 시기별 토양 유기물함량도 표층시비에서 높은 경향을 나타내었다. 토양물리성은 전층시비에 의해서 향상되는 경향을 보였고, 토양 미생물상은 전체적으로 표층시비에서 높았다. 표층시비구가 전층시비보다 5%의 수량이 증수되는 특성을 보였다.

Keywords

References

  1. 농촌진흥청. 2004. 친환경.유기농업 영농활용매뉴얼. 농촌진흥청. pp. 53-64.
  2. Brady, N. C. and R. R. Weil. 2002. Organisms and ecology of the soil. In: The nature and properties of soils. Person Education, Inc., Upper Saddle River, New Jersey, USA. pp. 449-497.
  3. Choi, H. S., C. R. Rom, and M. Gu. 2011. Effects of different organic apple production systems on seasonal nutrient variations of soil and leaf. Sci. Hortic. 129: 917.
  4. Idei, K. and T. Yoshino. 1972. Utilization of nitrogen in paddy field. Report of Natl. Agri. Res. Japan. 2: 1-14.
  5. JARES. 2011. Development of no-tillage cultivation of crops. ISBN: 78-6460077-000108-01, Jeollanam-do Agricultural Research & Extension Services, Korea. pp. 1-71.
  6. Kim, H. Y., H. S. Choi, B. H. Kim, H. J. Kim, K. J. Choi, D. Y. Chung, Y. Lee, and K. L. Park. 2011. Comparison of characteristics of a paddy soil and growth and production of rice as affected by organic nutrient sources. J. Bio-Environment Control 20: 241-245.
  7. Lee, C. S. 1986. Studies on determination of N-fertilizer rates for increasing rice yield in paddy soils. Ph. D. Thesis, Gyeongsang National University, Chinju, Korea.
  8. Marschner, H. 1995. Mineral nutrition of higher plants. Nutrient availability in soils. Academic press, San Diego, USA. pp. 483-507.
  9. MIFAFF. 2011. The five-year plan for the third green agriculture cultivation, Environment-Friendly Agriculture Division, MIFAFF, Gwacheon, Korea.
  10. NAAS. 2000. Soil and plant analyses. National Academy of Agricultural Science, RDA, Suwon, Korea.
  11. NAAS. 2011. Rice growing techniques. National Academy of Agricultural Science, RDA, Suwon, Korea.
  12. Nam, J. K., S. S. Kim, J. H. Lee, W. Y. Choi, N. H. Back, H. K Park, M. G. Choi, and T. O. Kwon. 2005. Proper nitrogen application level for improving the rice quality in Honam plain area. Kor. J. Crop Sci. 50: 56-61.
  13. Environmental-Friendly Agriculture Research Center. 2010. Organic Rice Manual. Nutrient management manual for dynamic natural farming system. ISBN: 978-89-961535-4-2 94520, Chonnam National University, Korea. pp. 1-166.