DOI QR코드

DOI QR Code

Landscape Planning and Design Methods with Human Thermal Sensation

인간 열환경 지수(HumanThermal Sensation)를 이용한 조경계획 및 디자인 방법

  • Park, Soo-Kuk (Dept. of Geography, University of Victoria, British Columbia)
  • 박수국 (캐나다 빅토리아대학교 지리학과)
  • Received : 2011.11.29
  • Accepted : 2012.02.05
  • Published : 2012.02.29

Abstract

Human thermal sensation based on a human energy balance model was analyzed in the study areas, the Changwon and Nanaimo sites, on clear days during thesummer of 2009. The climatic input data were air temperature, relative humidity, wind speed and solar and terrestrial radiation. The most effective factors for human thermal sensation were direct beam solar radiation, building view factor and wind speed. Shaded locations had much lower thermal sensation, slightly warm, than sunny locations, very hot. Also, narrow streets in the Nanaimo site had higher thermal sensation than open spaces because of greater reflected solar radiation and terrestrial radiation from their surrounding buildings. Calm wind speed also produced much higher thermal sensation, which reduced sensible and latent heat loss from the human body. By adopting climatic factors into landscape architecture, the human thermal sensation analysis method promises to help create thermally comfortable outdoor areas. The method can also be used for urban heat island modification and climate change studies.

이 연구는 인간 에너지 균형 모델에서 출발한 인간 열환경 지수 분석 방법을 이용하여 캐나다 BC주에 있는 나나이모시 상업지구안 좁은 길과 경상남도 창원시 중심상업지구에 있는 소공원을 연구 대상지로 2009년 여름철 열환경을 분석한 것이다. 기후 입력 자료는 기온, 상대습도, 풍속, 태양 및 지구 복사에너지이었으며, 그 결과 인간 열환경 지수에 가장 크게 영향을 미치는 요소들은 태양 직사광선, 건물시계지수 그리고 풍속이었다. 음지는 약간 더운 정도의 열환경을 조성하는 것으로 나타나 매우 덥게 나타난 양지에 비해 훨씬 좋은 열환경을 조성하는 것으로 나타났다. 나나이모 연구 대상지에 있는 좁은 길들은 주변의 넓은 장소들에 비해 주변 건축물에서 나오는 태양 반사광선과 지구 복사에너지들이 더 많이 영향을 미쳐 훨씬 덥게 나타났다. 낮은 풍속에 의해서 인체에서 방출되는 현열과 잠열의 양이 현저히 줄어듦으로서 더 더운 열환경이 조성되는 것으로 나타났다. 기후요소를 조경에 접목하기 위해서, 인간 열환경 지수 분석 방법을 이용하는 것은 열환경적으로 쾌적한 옥외 공간조성에 영향을 미칠 것이며, 도시 열섬 완화와 기후변화 연구에도 잘 이용될 수 있을 것이다.

Keywords

References

  1. 문수영, 김현수, 이광복(2010) 환경생태계획의 도시기후 변화 대응 가능성 연구-남양주 월산리 마스터플랜을 중심으로. 한국생태환경건축학회 논문집 10(6):11-19.
  2. 이은주(2006) 도시공간 구성요소와 열쾌적성과의 관련성 연구: 서울 사례지역을 중심으로. 한양대학교 도시대학원 석사학위논문.
  3. 이정아, 정대영, 전진형, 이상문, 송영배(2010) 공간 구조별 열쾌적성 평가와 열환경 개선방안.한국조경학회지 38(5):12-20.
  4. 이채연, 엄정희, 최영진, 김규량(2011) 토지이용도와 기상모델을 이용한 서울기후분석(CAS) 지도 개발. 한국지리정보학회지 14(1):12-25.
  5. 이춘석, 류남형(2010) 조경포장이 옥외공간의 온열쾌적성지수(WBGT) 에 미치는 영향-통풍과 차광이 배제된 하절기 주간의 조건에서. 한국조경학회지 38(2):1-8.
  6. 조현길, 안태원(2010) 열쾌적성과 에너지절약을 위한 녹지계획 전략 연구. 한국조경학회지 38(3):23-32.
  7. Ali-Toudert, F.(2005) Dependence of Outdoor Thermal Comfort on Street Design in Hot and Dry Climate. Berichte des Meteorologischen Institutes der Universitat Freiburg Nr.15, http://www.freidok.unifreiburg.de/volltexte/2078.
  8. ASHRAE(1997) ASHRAE Handbook Fundamentals, Chapter 8: Thermal Comfort. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. Atlanta.
  9. Brode, P., D. Fiala, K. Blazejczyk, I. Holmer, G. Jendritzky, B. Kampmann, B. Tinz and G. Havenith(2011a) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, doi: 10.1007/s00484-011-0454-1.
  10. Brode, P., E. L. Kruger, F. A. Rossi and D. Fiala(2011b) Predicting urban outdoor thermal comfort by the Universal Thermal Climate Index UTCI-a case study in Southern Brazil. International Journal of Biometeorology, doi:10.1007/s00484-011-0452-3.
  11. Brown, R. D. and T. J. Gillespie(1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. International Journal of Biometeorology 30:43-52. https://doi.org/10.1007/BF02192058
  12. Brown, R. D. and T. J. Gillespie(1995) Microclimatic Landscape Design: Creating Thermal Comfort and Energy Efficiency. Wiley, New York.
  13. Chen, L. and E. Ng(2011) Quantitative urban climate mapping based on a geographical database: A simulation approach using Hong Kong as a case study. International Journal of Applied Earth Observation and Geoinformation 13: 586-594. https://doi.org/10.1016/j.jag.2011.03.003
  14. Fanger, P.O. (1972) Thermal Comfort: Analysis and Applications in Environmental Engineering. McGraw-Hill, New York.
  15. Fiala, D., G. Havenith, P. Brode, B. Kampmann and G. Jendritzky (2011)UTCI-Fiala multi-node model of human heat transferand temperature regulation. International Journal of Biometeorology, doi:10.1007/s00484-011-0424-7.
  16. Fountain, M. and C. Huizenga(1995) A Thermal Sensation Model for Use by the Engineering Profession. Environmental Analytics, Piedmont.
  17. Gagge, A. P., A. Fobelets and L. G. Berglund(1986) A standard predictive index of human response to the thermal environment. ASHRAE Transactions 92 (2B) : 709-731.
  18. Hoppe, P. R.(1993) Heat balance modeling. Experientia 49: 741-746. https://doi.org/10.1007/BF01923542
  19. Hoppe, P. R. (1999) The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology 43: 71-75. https://doi.org/10.1007/s004840050118
  20. ISO 7730(2005) Moderate thermal environments-Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Organization for Standardization, Geneva.
  21. Lee, J. B., J. S. Bae, T. Matsumoto, H. M. Yang and Y. K. Min (2009)Tropical Malaysians and temperate Koreans exhibit significant differences in sweating sensitivity in response to iontophoretically administered acetylcholine. International Journal of Biometeorology 53: 149-157. https://doi.org/10.1007/s00484-008-0197-9
  22. Lin, T. P. and A. Matzarakis(2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology 52: 281-290. https://doi.org/10.1007/s00484-007-0122-7
  23. Lin, T. P., A. Matzarakis and R. L. Hwang(2010) Shading effecton long-term outdoor thermal comfort. Building and Environment 45: 213-221. https://doi.org/10.1016/j.buildenv.2009.06.002
  24. Lindberg, F., B. Holmer and S. Thorsson(2008) SOLWEIG 1.0-modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. International Journal of Biometeorology 52(7) : 697-713. https://doi.org/10.1007/s00484-008-0162-7
  25. Lindberg, F. and C. S. B. Grimmond(2011) The influence of vegetation and building morphology on shadow patterns and meanradiant temperatures in urban areas: model developmentand evaluation. Theoretical and Applied Climatology, doi:10.1007/s00704-010-0382-8.
  26. Matzarakis, A., H. Mayer and M. G .Iziomon(1999) Applications of a universal thermal index : physiological equivalent temperature. International Journal of Biometeorology 43: 76-84. https://doi.org/10.1007/s004840050119
  27. Matzarakis, A., F. Rutz and H. Mayer(2007) Modelling radiation fluxes in simple and complex environments-application of the RayMan model. International Journal of Biometeorology 51: 323-334. https://doi.org/10.1007/s00484-006-0061-8
  28. Matzarakis, A., F. Rutz and H.Mayer(2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology 54: 131-139. https://doi.org/10.1007/s00484-009-0261-0
  29. Park, S.(2011) Human-Urban Radiation Exchange Simulation Model. PhD dissertation, University of Victoria, BC. Canada.
  30. Park, S. and S. E. Tuller(2011a) Human body area factors for radiation exchange analysis: standing and walking postures. International Journal of Biometeorology 55(5): 695-709. https://doi.org/10.1007/s00484-010-0385-2
  31. Park, S. and S. E. Tuller(2011b) Comparison of human radiation exchange models in outdoor areas. Theoretical and Applied Climatology 105( 3-4): 357-370. https://doi.org/10.1007/s00704-010-0388-2
  32. Park, S., S. E. Tuller and K. Park(2011) Human thermal sensation analysis method for landscape planning and design. Landscapeand Urban Planning, in progress.
  33. Rothfusz, L. P.(1990) The Heat Index 'Equation' (or, More Than You Ever Wanted to Know About Heat Index). Scientific Services Division (NWS Southern Region Headquarters) SR 90-23, Fort Worth, TX.
  34. Siple, P. A. and C. F. Passel(1945) Measurements of dry atmospheric cooling in subfreezing temperatures. Proceedings of the American Philosophical Society 89:177-199.
  35. Steadman, R. G.(1979) The assessment of Sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. Journal of Applied Meteorology 18: 861-873. https://doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
  36. Teller, J. and S. Azar(2001) TownScopeII-A computer system to support solar access decision making. Sol Energy 70:187-200. https://doi.org/10.1016/S0038-092X(00)00097-9
  37. Thom, E. C.(1959) The discomfort index. Weatherwise 12: 57-60. https://doi.org/10.1080/00431672.1959.9926960
  38. Thorsson, S., F. Lindberg, I. Eliasson and B. Holmer(2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. International Journal of Climatology 27: 1983-1993. https://doi.org/10.1002/joc.1537
  39. VDI(1998) 3787, Part 2: Environmental Meteorology-Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning at Regional Level Part 1: Climate. Beuth, Berlin.
  40. Yaglou, C. P. and D. Minard(1957) Control of heat casualties at military training centres. A. M. A. Arch. Industr. Health, 16: 302-316.
  41. http://astro.kasi.re.kr/Life/SolarHeightForm.aspx?MenuID=108
  42. http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=5FBF816A-1
  43. http://www.envi-met.com
  44. http://www.esrl.noaa.gov/gmd/grad/solcalc/
  45. http://www.staedtebauliche-klimafibel.de/Climate_Booklet/kap_2/kap_ 2-6.htm#
  46. http://www.utci.org

Cited by

  1. The Influences of Landscape Features on Visitation of Hospital Green Spaces—A Choice Experiment Approach vol.14, pp.7, 2017, https://doi.org/10.3390/ijerph14070724