DOI QR코드

DOI QR Code

Exhaust-Gas Heat-Recovery System of Marine Diesel Engine (II) - Exergy Analysis for Working Fluids of R245fa and Water -

선박용 디젤엔진의 배기가스 열회수 시스템 (II) - R245fa 및 Water 의 작동유체에 대한 엑서지 분석 -

  • Choi, Byung-Chul (Environment & Plant Team, Korean Register of Shipping) ;
  • Kim, Young-Min (Department of Engine Research, Korea Institute of Machinery & Materials)
  • 최병철 ((사)한국선급 환경플랜트팀) ;
  • 김영민 (한국기계연구원 그린동력연구실)
  • Received : 2011.11.24
  • Accepted : 2012.03.20
  • Published : 2012.06.01

Abstract

The exergy characteristics for R245fa and water working fluids have been analyzed for an electric generation system utilizing the Rankine cycle to recover heat from the wasted exhaust gas from a diesel engine used for the propulsion of a large ship. The theoretical calculation results showed that the efficiencies of exergy and system exergy improved as the turbine inlet pressure increased for R245fa at a fixed mass flow rate. Furthermore, the exergy destruction rates of the condenser and evaporator were relatively larger than those in other components. The exergy efficiency of the system increased with increasing mass flow rate. For a water working fluid, although the exergy destruction rate of the evaporator was similar to that for R245fa, the exergy loss rate varied significantly in response to variations in the pressure and mass flow rates at the turbine inlet.

대형 선박의 추진용 디젤엔진에서 버려지는 배기가스의 열을 회수하기 위한 랭킨사이클이 적용된 발전시스템에 대하여 R245fa 및 water의 작동유체에 따른 그 엑서지 특성을 분석하였다. 그 이론적인 계산 결과로, R245fa에 대하여 터빈입구의 압력이 증가할수록 엑서지 효율 및 시스템의 엑서지 효율이 증가하였고, 엑서지 파괴율은 주로 응축기 및 증발기에서 상대적으로 높게 나타났다. 그리고 질량유량의 증가에 따라 시스템의 엑서지 효율이 증가하는 특성을 보였다. Water의 경우에, 증발기에서의 엑서지 파괴율은 R245fa의 경우와 유사하게 나타났지만, 터빈입구의 압력 및 질량유량 비율의 변동에 대하여 열원에 대한 엑서지 손실률이 가장 큰 폭으로 변동하였다.

Keywords

References

  1. Buhaug, O., Corbett, J.J., Endresen, O., Eyring, V., Faber, J., Hanayama, S., Lee, D.S., Lee, D., Lindstad, H., Markowska, A.Z., Mjelde, A., Nelissen, D., Nilsen, J., Palsson, C., Winebrake, J.J., Wu, W. and Yoshida, K., 2009, Second IMO GHG Study 2009, International Maritime Organization(IMO) London, UK.
  2. IMO, 2011, Chapter 4 Regulations on Energy Efficiency for Ships, MEPC 62/WP. 11/Add. 1/Rev. 1.
  3. Vaja, I., Gambarotta, A., 2010, "Internal Combustion Engine Bottoming with Organic Rankine Cycles," Energy, Vol. 35, pp. 1084-1093. https://doi.org/10.1016/j.energy.2009.06.001
  4. Bombarda, P., Invernizzi, C.M. and Pietra, 2010, "Heat Recovery from Diesel Engines: A Thermodynamic Comparison Between Kalina and ORC Cycles," Applied Thermal Engineering, Vol. 30, pp. 212-219. https://doi.org/10.1016/j.applthermaleng.2009.08.006
  5. Teng, H., Regner, G. and Cowland, C., "Achieving High Engine Efficiency for Heavy-Duty Diesel Engines by Waste Heat Recovery Using Supercritical Organic-Fluid Rankine Cycle," SAE2006-01-3522.
  6. Teng. H. and Regner, G., 2009, "Improving Fuel Economy for HD Diesel Engines with WHR Rankine Cycle Driven by EGR Cooler Heat Rejection," SAE2009-01-2913.
  7. Choi, B.C. and Kim, Y.M., 2012, "Exhaust-Gas Heat- Recovery System of Marine Diesel Engine (I) - Energy Efficiency Comparison for working fluids of R245fa and Water," Trans. KSME (B), Vol. 36, No. 3, pp. 293-299. https://doi.org/10.3795/KSME-B.2012.36.3.293
  8. Dai, Y., Wang, J. and Gao, L., 2009, "Parametric Optimization and Comparative Study of Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energy Conversion and Management, Vol. 50, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
  9. Al-Sulaiman, F.A., Dincer, I. and Hamdullahpur, F., 2010, "Exergy Analysis of an Integrated Solid Oxide Fuel Cell and Organic Rankine Cycle for Cooling, Heating, and Power Production," Journal of Power Sources, Vol. 195, 2346-2354. https://doi.org/10.1016/j.jpowsour.2009.10.075
  10. Al-Sulaiman, F.A., Hamdullahpur, F. and Dincer, I., 2011, "Greenhouse Gas Emission and Exergy Assessments of an Integrated Organic Rankine Cycle with a Biomass Combustor for Combined Cooling, Heating, and Power Production," Applied Thermal Engineering, Vol. 31, pp. 439-446. https://doi.org/10.1016/j.applthermaleng.2010.09.019
  11. Cengel, Y.A. and Boles, M.A., 2006, Thermodynamics: An Engineering Approach, 5th Ed., McGraw-Hill, pp. 279-605.
  12. Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., 2007, Fundamentals of Heat and Mass Transfer 6th Ed., John & Wiley & Sons, pp. 669-722.
  13. Hyundai Heavy Industries Co., Ltd., 2011, Technical File for Hyundai-Wartsila 12RT-flex96C-B.
  14. Srinivasan K.K., Mago P.J. and Krishnan S.R., 2010, "Analysis of Exhaust Waste Heat Recovery from a Dual Fuel Low Temperature Combustion Engine using an Organic Rankine Cycle," Energy, Vol. 35, pp. 2387-2399. https://doi.org/10.1016/j.energy.2010.02.018
  15. Boyce, M.P., 2010, Handbook for Cogeneration and Combined Cycle Power Plants, 2nd Ed., ASME Press, pp. 46-47.
  16. Lemmon, E.W., Huber, M.L. and McLinden, M.O., 2010, REFPROP Ver. 9.0, NIST.
  17. Klein, S.A., Engineering Equation Solver(EES), Prof., Ver. 8.830.

Cited by

  1. Thermodynamic Analysis of Trilateral Cycle Applied to Exhaust Gas of Marine Diesel Engine vol.36, pp.9, 2012, https://doi.org/10.3795/KSME-B.2012.36.9.937
  2. Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle vol.37, pp.2, 2013, https://doi.org/10.3795/KSME-B.2013.37.2.171
  3. Analysis of organic rankine cycle for designing evaporator of engine exhaust heat recovery system vol.37, pp.5, 2013, https://doi.org/10.5916/jkosme.2013.37.5.446
  4. The effect of heat exchanger type for exhaust heat recovery system on diesel engine performance vol.38, pp.6, 2014, https://doi.org/10.5916/jkosme.2014.38.6.639