DOI QR코드

DOI QR Code

Assessment of Maximum Spreading Models for a Newtonian Droplet Impacting on a Solid Surface

고체 표면에 충돌하는 뉴턴 액적에 대한 최대 액막 직경 모델 검토

  • Received : 2012.01.04
  • Accepted : 2012.03.08
  • Published : 2012.06.01

Abstract

The maximum spreading is the maximum extent to which a drop can spread after impacting on a surface. It is one of the crucial factors determining the spraying performance in many applications. In this study, the existing maximum spreading models for a Newtonian liquid droplet impacting on a dry solid surface were reviewed and compared with the experimental results over the ranges of $4{\leq}Re{\leq}11700$, $23{\leq}We{\leq}786$, and $37.9^{\circ}{\leq}{\theta}_s{\leq}107.1^{\circ}$. The surface wettability was found to have only a minor influence on the maximum spreading, compared to the liquid viscosity and impact velocity. Among the models tested, the Roisman (2009) model showed the best agreement with the experimental results, matching 80% of the measured data within ${\pm}5%$.

최대 액막 직경은 액적이 표면에 충돌한 이후에 최대로 퍼질 수 있는 정도를 의미하며, 분무기술과 관련된 다양한 응용분야에서 분무성능을 결정하는 중요한 인자 중의 하나이다. 본 연구에서는 고체표면에 충돌하는 뉴턴 액적에 대한 기존의 최대 액막 직경 모델들을 $4{\leq}Re{\leq}11700$, $23{\leq}We{\leq}786$, $37.9^{\circ}{\leq}{\theta}_s{\leq}107.1^{\circ}$ 범위에 해당하는 본 연구의 실험결과와 비교하여 검토하였다. 실험결과, 유체의 점도 및 충돌속도에 비하여 표면 젖음성이 최대 액막 직경에 미치는 영향은 미미한 것으로 나타났다. 한편, 기존의 모델 중에서 Roisman (2009) 모델은 최대 액막 직경에 대한 실험데이터의 80%를 ${\pm}5%$ 이내로 예측함으로써 가장 우수한 예측성능을 보였다.

Keywords

References

  1. Collings, E. W., Markworth, A. J., Mccoy, J. K. and Saunders, J. H., 1990, "Splat-Quench Solidification of Freely Falling Liquid-Metal Drops by Impact on a Planar Substrate," J. Mater. Sci., Vol. 25, pp. 3677-3682. https://doi.org/10.1007/BF00575404
  2. Chandra, S. and Avedisian, C. T., 1992, "Observations of Droplet Impingement on a Ceramic Porous Surface," Int. J. Heat Mass Trans., Vol. 35, pp. 2377-2388. https://doi.org/10.1016/0017-9310(92)90080-C
  3. Bennett, T. and Poulikakos, D., 1993, "Splat-Quench Solidification: Estimating the Maximum Spreading of a Droplet Impacting a Solid Surface," J. Mater. Sci., Vol. 28, pp. 963-970 https://doi.org/10.1007/BF00400880
  4. Asai, A., Shioya, M., Hirasawa, S. and Okazaki, T., 1993, "Impact of an Ink Drop on Paper," J. Imaging Sci. Tech., Vol. 37, pp. 205-207.
  5. Scheller, B. L. and Bousfield, D. W., 1995, "Newtonian Drop Impact with a Solid Surface, AIChE J., Vol. 41, pp.1357-1367. https://doi.org/10.1002/aic.690410602
  6. Mao, T, Kuhn, D.C.S. and Tran, H., 1997, "Spread and Rebound of Liquid Droplets Upon Impact on Flat Surfaces, AIChE J., Vol. 43, pp. 2169-2179. https://doi.org/10.1002/aic.690430903
  7. Shiraz, D. A. and Chandra, S., 2000, "Impact, Recoil and Splashing of Molten Metal Droplets," Int. J. Heat Mass Trans., Vol. 43, pp. 2841-2857. https://doi.org/10.1016/S0017-9310(99)00350-6
  8. Pasandideh-Fard, M., Aziz, S. D., Chandra, S. and Mostaghimi, J., 2001, "Cooling Effectiveness of a Water Drop Impinging on a Hot Surface," Int. J. Heat Mass Trans., Vol. 22, pp. 201-210.
  9. Ukiwe, C. and Kwok, D. Y., 2005, "On the Maximum spreading diameter of impacting droplets on Well-Prepared Solid Surfaces," Langmuir, Vol. 21, pp. 666-673. https://doi.org/10.1021/la0481288
  10. Son, Y., Kim, C., Yang, D. H. and Ahn, D. J., 2008, "Spreading of an Inkjet Droplet on a Solid Surface with a Controlled Contact Angle at Low Weber and Reynolds Numbers," Langmuir, Vol. 24, pp. 2900-2907. https://doi.org/10.1021/la702504v
  11. Vadillo, D. C., Soucemarianadin, A., Delattre, C. and Roux, D. C. D., 2009, "Dynamic Contact Angle Effects onto the Maximum Drop Impact Spreading on Solid Surfaces," Phys. Fluids, Vol. 21, 122002. https://doi.org/10.1063/1.3276259
  12. Roisman, I. V., 2009, "Inertia Dominated Drop Collisions. II. An Analytical Solution of the Navier- Stokes Equations for a Spreading Viscous Film," Phys. Fluids, Vol. 21, 052104. https://doi.org/10.1063/1.3129283
  13. Moita, A. S. and Moreira, A. L. N, 2010, "Assessment of Heat Transfer Measurements at Drop/Wall Interactions: Relation with the Impact Condition," Proc. 23rd Ann. Conf. Liq. At. Spray Syst. Europe (ILASS-Europe) 2010, Brno, Czech Republic.
  14. German, G. and Bertola, V., 2009, "Review of Drop Impact Models and Validation with High-Viscosity Newtonian Fluids," At. Sprays, Vol. 19, pp. 787-807. https://doi.org/10.1615/AtomizSpr.v19.i8.60
  15. Marengo, M., Antonini, C., Roisman, I. V. and Tropea, C., 2011, "Drop Collisions with Simple and Complex Surfaces," Curr. Opin. Colloid Interface Sci., Vol. 16, pp. 292-302. https://doi.org/10.1016/j.cocis.2011.06.009
  16. An, S. M. and Lee, S. Y., 2012, "Observation of the Spreading and Receding Behavior of a Shear-Thinning Liquid Drop Impacting on Dry Solid Surfaces," Exp. Therm. Fluid Sci., Vol. 37, pp. 37-45. https://doi.org/10.1016/j.expthermflusci.2011.09.018
  17. Crooks, R., Copper-Whitez, J. and Beger, D. V., 2001, "The Role of Dynamic Surface Tension and Elasticity on the Dynamics of Drop Impact," Chem. Eng. Sci., Vol. 56, pp. 5575-5592. https://doi.org/10.1016/S0009-2509(01)00175-0
  18. Rioboo, R., Tropea, C. and Marengo, M., 2002, "Time Evolution of Liquid Drop Impact onto Solid, Dry Surfaces," Exp. Fluids, Vol. 33, pp. 112-124. https://doi.org/10.1007/s00348-002-0431-x
  19. Yang, W. J., 1975, "Theory on Vaporization and Combustion of Liquid Drops of Pure Substances and Binary Mixtures on Heated Surfaces," Report No. 353, Institute of Space and Aeronautical Science, University of Tokyo, pp. 423-455.
  20. Healy, W. M, Hartley, J. G. and Abdel-Khalik, S. I., 2001, "Surface Wetting Effects on the Spreading of Liquid Droplets Impacting a Solid Surface at Low Weber Numbers," Int. J. Heat Mass Trans., Vol. 44, pp. 235-240. https://doi.org/10.1016/S0017-9310(00)00097-1
  21. Madejski, J., 1976, "Solidification of Droplets on a Cold Surface, Int. J. Heat Mass Trans., Vol. 19, pp. 1009-1013. https://doi.org/10.1016/0017-9310(76)90183-6
  22. Chandra, S. and Avedisian, C. T., 1991, "On the Collision of a Droplet with a Solid Surface," Proc. R. Soc. Lond. Ser. A, Vol. 432, pp. 13-41. https://doi.org/10.1098/rspa.1991.0002
  23. Pasandideh-Fard, M, Qiao, Y. M., Chandra, S. and Mostaghimi, J., 1996, "Capillary Effects During Droplet Impact on a Solid Surface," Phys. Fluids, Vol. 8, pp. 650-659. https://doi.org/10.1063/1.868850
  24. Roisman, I. V., Berberovic, E. and Tropea, C., 2009, "Inertial Dominated Drop Collisions. I. On the Universal Flow in the Lamella," Phys. Fluids, Vol. 21, 052103. https://doi.org/10.1063/1.3129282

Cited by

  1. A Study on the Effects of Surface Patterns on Droplet Impingement Behaviors vol.23, pp.4, 2016, https://doi.org/10.6117/kmeps.2016.23.4.107