DOI QR코드

DOI QR Code

Application of the New Degree of Compaction Evaluation Method

새로운 다짐도 평가기법의 적용성에 관한 연구

  • Park, Keun-Bo (Geotechnical Engineering Research Division, SOC Research Institute, KICT) ;
  • Kim, Ju-Hyong (Geotechnical Engineering Research Division, SOC Research Institute, KICT)
  • 박근보 (한국건설기술연구원 SOC성능연구소 Geo-인프라연구실) ;
  • 김주형 (한국건설기술연구원 SOC성능연구소 Geo-인프라연구실)
  • Received : 2010.06.30
  • Accepted : 2011.12.09
  • Published : 2012.02.29

Abstract

CMV(Compaction Meter Value) obtained from compaction results using an accelerometer, which measures the impact on the ground and the resilient force of the ground, is compared with the other degree of compaction through regression analysis. As a result, there is no correlation between results from conventional test methods (e.g., the plate load test and field density test) and the degree of compaction evaluated by either the Geogauge or the dyanamic cone penetrometer. To assess the possibility of replacing the conventional test methods with new test methods using CMV, several degrees of compaction tests were carried out. Those results show that the CMV obtained from compaction results using an accelerometer can be used as a substitute for conventional methods to evaluate the stiffness characteristics of compacted soil.

현장 다짐기에 가속도계를 이용한 연속다짐 평가장치를 부착하여 얻은 지반의 지지력 평가값 및 기존의 다짐도 평가장치의 결과 값들을 회귀분석하여 비교하였다. 회귀분석 평가 결과, 특정 성토재료에서 Geogauge와 동적콘관입시험은 기존 다짐도 평가(평판재하시험 및 다짐도시험) 결과와의 상관관계가 거의 없는 것으로 나타났다. 또한 CMV를 이용한 평가법이 기존 다짐도 평가를 대체할 수 있는지를 알아보기 위하여 여러 가지 다짐도 평가를 실시하였다. 그 결과 가속도계를 이용한 CMV는 다져진 지반의 강성 특성을 빠르고 편리하게 평가할 수 있을 것으로 판단된다.

Keywords

References

  1. 국토해양부 (2009), 한국형 포장설계법 개발과 포장성능 개선방안 연구.
  2. 조성민, 정경자 (2000), "반발력을 이용한 새로운 다짐도 검사기법 개발", 2000년도 소과제 연구보고서, 한국도로공사 도로연구소, pp.26.
  3. 표준협회 (2000), 한국산업표준.
  4. 표준협회 (2001), 한국산업표준.
  5. AMMANN_CASE (2008), AMMANN/Case/Texana IC System, presentation, "Intelligent Compaction. GPS-based Compaction Control", TPF ICS intial-TWG meeting.
  6. De Beer, M. (1990), "Use of Dynamic Cone Penetrometer (DCP) in the Design of Road Structures", Geotechnics in African Environment, Blight et al., eds, Balkema, Rotterdam, The Netherlands, pp.167-176.
  7. Federal Highway Administration (FHWA) (2002), "Geogauge Pooled Fund Study Documents" (www.tdcfiles.com)
  8. George K. Chang, Qinwu Xu, Rob Rasmussen, David Merritt, Larry Michael, David White, and Bob Horan (2009), "Accelerated implementation of intelligent compaction technology for embankment subfrade soils, aggregate base, and asphalt pavement materials", Year 1 report, FHWA-IF-07, Federal Highway administration.
  9. Alshibli, K. A., Abu-Farsakh, M., and Seyman, E. (2005), "Laboratory Evaluation of the Geogauge and Light Falling Weight Deflectometer as Construction Control Tools", J. of Materials in Civil Eng., Vol.17, No.5. pp.560-569. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(560)
  10. Kleyn, E. G. (1975), "The Use of the Dynamic Cone Penetrometer (DCP)", Report 2/74. Transvaal Roads Department, Pretoria.
  11. Mooney, M. A., and Adam, D. (2007), "Vibratory roller integrated measurement of earthwork compaction: An overview", Proc., 7th Intl.Symp. on Field Measurements in Geomechanics: FMGM 2007, ASCE, Boston, Ma.
  12. Sandstrom, Ak (1993), "Oscillatory compaction", Proceedings of XII IRF World Congress, Madrid, pp.957-961.
  13. Sandstrom, Ak (1994), "Numerical simulation of a vibratory roller on cohesionless soil", Geodynamik Report, Stockholm, pp.22.
  14. Sandstrom, A. and Pettersson, C. (2004), "Intelligent systems for QA/QC in soil compaction", Proc., Annual Transportation Research Board Meeting (CD-ROM), Transportation Research Board, Washington, D.C.
  15. Thurner, H., Sandstrom, Ak (1991), "Quality assurance in soil compaction", Proceedings of the XIXth PIARC World Congress, Question II, Marrakech, pp.468-477.
  16. Thurner, H., Sandstrom, Ak (2000), "Continuos compaction control", CCC. Compaction of Soils and Granular Materials. Modelling and Properties of Compacted materials, Paris, pp.237-245.