DOI QR코드

DOI QR Code

The Effectiveness of the Dispersant Use during the "Deepwater Horizon" Incident -REVIEW of the Proceedings from 2011 International Oil Spill Conference-

미국 멕시코만 기름유출사고에서 본 유처리제 사용의 효용성 고찰

  • 조현진 (해양경찰청 해양오염방제국) ;
  • 하창우 (해양경찰청 해양오염방제국)
  • Received : 2011.12.16
  • Accepted : 2012.02.23
  • Published : 2012.02.28

Abstract

Once oil has spilled, oil spill responders use a variety of countermeasures to reduce the adverse effects of spilled oil on the environment. Mechanical methods of containment and recovery are preferred as the first response when the use of other methods fail or are ineffective. In these cases, the application of oil dispersants shall be use only as a last resort. While effectiveness of dispersants in removing oil form the sea surface is proven, the use of dispersants is controlled in almost all countries due to the toxicity of their active agents and the dispersed oil on the marine environment. However, according to reports, after dispersant application, no significant toxicity to fish or shrimp was observed in the field-collected samples. Moreover, the results also indicate that dispersant-oil mixtures are generally no more toxic to the aquatic test species than oil alone. During the Deepwater Horizon Incident, dispersants were applied to floating oil and injected into the oil plume at depth. These decisions were carefully considered by state and federal agencies, as well as BP, to prevent as much oil as possible from reaching sensitive shoreline habitats. Net Environmental Benefit Analysis for dispersant use assumed that dispersants appear to prevent long-term contamination resulting absence of oil in the substrate and will benefit marine wildlife by decreasing the risk of significant contamination to feathers or fur. Further study to use dispersants with scientific baseline is needed for our maritime environment which consistently threaten huge oil spill incidents occurrence.

바다에 기름오염 사고가 발생하면 여러 가지 방제 방법 중 물리적 회수 방법을 우선적으로 사용하고 유처리제는 최후 수단으로 고려하는 경향이 있다. 유처리제는 수중으로 기름이 신속히 분산되도록 하여 해수면으로부터 제거하는 방법이다. 해수면으로부터 신속히 기름을 제거하는데 대한 유처리제의 효용성은 널리 증명되어 왔으나 아직도 대부분의 국가들은 해양환경에 미치는 독성을 우려하여 적극적인 사용을 하지 않고 있는 실정이다. 보고된 자료에 의하면 유처리제와 혼합된 기름이 기름 그 자체보다 독성이 더 크게 나타나지 않았다. 멕시코만 기름유출 사고시 미국 정부와 BP사는 최대한 해안에 기름이 도달하지 않는데 중점을 두고 해수면뿐만 아니라 수중의 기름에 대해서도 유처리제를 사용하였다. 유처리제에 대한 순환경편익을 분석하면 유처리제를 사용함으로써 기름이 생태계에 머무는 시간이 줄어들며 장기간 노출을 예방하고 야생동물에 심각한 오염을 방지하는 효과가 있는 등 다양한 연구가 진행되고 있다. 미국 멕시코만 유류오염 사고와 같은 대규모 해양오염사고의 위험이 상존하는 우리 실정에서도 과학적 결과를 바탕으로 한 유처리제 사용의 효용성과 안전성에 대한 검토가 이루어져야 할 시점이라 사료된다.

Keywords

References

  1. Belore, R., K. Trudel and J. Morrison(2011), Weathering, emulsification, and chemical dispersibility of Mississippi Canyon 252 crude oil : field and laboratory studies. International Oil Spill Conference. 2011-247, p. 19.
  2. BenKinney, M., J. Brown and S. Mudge(2011), Monitoring effects of aerial dispersant application during the MC252 Deepwater Horizon Incident. International Oil Spill Conference. 2011-368, p. 7.
  3. Boehm, P. D., L. L. Cook and K. J. Murray(2011), Aromatic hydrocarbon concentrations in seawater: Deepwater Horizon Oil Spill. International Oil Spill Conference. 2011-371, p. 13.
  4. Coelho, G., D. Aurand, A. Slaughter, L. Robinson and B. Carrier Jones(2011), Rapid toxicity evaluations of several dispersants : a comparison of results. International Oil Spill Conference. 2011-416, p. 11
  5. Curd, H.(2011), The use of dispersant for the control of volatile organic compounds. International Oil Spill Conference. 2011-359, p. 7.
  6. DeMicco, E., P. A. Schuler and T. Omer(2011), Net Environmental Benefit Analysis(NEBA) of dispersed oil on nearshore tropical ecosystems: Tropics-the 25th Year Research Visit. International Oil Spill Conference. 2011-282, p. 14.
  7. Duerr, R. S., J. G. Massey, M. H. Ziccardi and Y. N. Addassi(2011), Physical effects of Prudhoe Bay crude oil water accommodated fractions(WAF) and Corexit 9500 chemically enhanced water accommodated fractions (CEWAF) on common murre feathers and California sea otter hair. International Oil Spill Conference. 2011-252, p. 10.
  8. Dussauze, M., H. Marguerie, M. Auffret, F. Merlin and S. Floch(2011), DISCOBIOL Program : Investigation of dispersant use in coastal estuarine. International Oil Spill Conference. 2011-173, p. 11.
  9. Federal Interagency Solutions Group, Oil Budget Calculator Science and Engineering Team(2010), Oil Budget Calculator Deepwater Horizon Technical Documentation, pp. 38-40
  10. Guevarra, J. L.(2011), The nationalisation of dispersants accreditation and approval protocols in Asia : Implications for response. International Oil Spill Conference. 2011-144, p. 10.
  11. Joeckel, J., A. H. Walker and D. Scholz(2011), Dispersant use approval : before, during and after Deepwater Horizon. International Oil Spill Conference. 2011-329, p. 12.
  12. Lee, K., T. King, B. Robinson and Z. Li(2011), Toxicity effects of chemically-dispersed crude oil on fish. International Oil Spill Conference. 2011-163, p. 17.
  13. Levine, E., J. Stout, B. Parscal, A. H. Walker and K. Bond(2011), Aerial dispersant monitoring using SMART Protocols during the Deepwater Horizon Spill Response. International Oil Spill Conference. 2011-225, p. 13.
  14. McFarlin, K. M. and R. A. Perkins(2011), Toxicity of physically and chemically dispersed oil to selected arctic species. International Oil Spill Conference. 2011-149, p. 7.

Cited by

  1. Overview of Major Oil Spill at Sea and Details of Various Response Actions -1. Number and Volume of Marine Oil Spills in Korea and in the World vol.19, pp.2, 2013, https://doi.org/10.7837/kosomes.2013.19.2.129
  2. Dispersed oil decreases the ability of a model fish (Dicentrarchus labrax) to cope with hydrostatic pressure vol.24, pp.3, 2017, https://doi.org/10.1007/s11356-016-7955-8
  3. Overview of Major Oil Spill at Sea and Details of Various Response Actions 2. Analysis of Marine Oil Pollution Incidents in Korea vol.19, pp.5, 2013, https://doi.org/10.7837/kosomes.2013.19.5.467
  4. A Study on the Effectiveness and Safety Comparison of Dispersants vol.30, pp.6, 2015, https://doi.org/10.14346/JKOSOS.2015.30.6.148
  5. Distribution and migration of Japanese common squid, Todarodes pacificus, in the southwestern part of the East (Japan) Sea vol.91, pp.2, 2012, https://doi.org/10.1016/j.fishres.2007.12.009
  6. Estimation of Chemical Dispersion Amount Considering the Dosage of Dispersant and Change of Oil Properties by Weathering vol.21, pp.4, 2012, https://doi.org/10.7846/jkosmee.2018.21.4.260
  7. 오일스네어에 대한 오일 흡착기준 정립 및 고시방향 연구 vol.34, pp.6, 2012, https://doi.org/10.14346/jkosos.2019.34.6.22
  8. Spatial variability of fishing grounds in response to oceanic front changes detected by multiple satellite measurements in the East (Japan) sea vol.41, pp.15, 2012, https://doi.org/10.1080/01431161.2019.1685722