DOI QR코드

DOI QR Code

Geochemical Characteristics and Trace Metal Speciation of Soils in Major Source Area of Asian Dust

주요 황사발원지 토양의 지구화학적 특성 및 미량원소 존재형태 연구

  • Lee, Pyeong-Koo (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Youm, Seung-Jun (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources) ;
  • An, Gi-O (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 이평구 (한국지질자원연구원 지구환경연구본부) ;
  • 염승준 (한국지질자원연구원 지구환경연구본부) ;
  • 안기오 (한국지질자원연구원 지구환경연구본부)
  • Received : 2011.06.29
  • Accepted : 2012.02.21
  • Published : 2012.02.28

Abstract

In this study, we investigated the chemical characteristics of soils collected from the several deserts and loess in China known as the typical source areas of Asian dust (the Taklamakan desert, the Alashan desert, the Ordos desert and the Loess Plateau). Based on our analysis, we examined the possibility of adverse effects on environments and human health. In each desert and loess, major elemental compositions of soils did not show large variations, implying that the long-periodic mixing of soils in each area made their chemical compositions homogeneous. Minor elements of soils in each desert and loess showed more complicated patterns with strong correlations each other (e.g., Cr, Cu, As, Co, Ni, V, Y, Sc, Sn, Pb, Zn, Cd, Cs, Li, Th, U). These results thus enable us to discriminate the soil of the Loess Plateau from those of the other deserts in China. The results of sequential extraction experiments for soils showed that the chemical speciation of Fe was dominant in residual fraction (>85%) in all deserts and loess, but the fractions of Mn and Ca chemical speciations were very different in each area. In the case of Mn, the fraction of amorphous Fe-Mn hydroxides (55.4%) in the Central Loess Plateau and the carbonate fraction (33.8%) in Taklamakan desert were higher as much as 2 to 5 times than other deserts. The chemical speciations of Ca are dominant in carbonate fraction in Taklamakan (75.9%) and Alashan (50.5%) deserts, but carbonate fractions of Ca in the Loess Plateau and Ordos deserts were low (6.6% and 2.1%, respectively). According to the mobility of trace elements inferred from the results of sequential extraction procedure, we could classify them into five groups, and the mobility of Cd, Pb and Cu are more than 87%, 33% and 30%, respectively. Therefore, Cd, Pb and Cu in soils of deserts and loess could be easily dissolved when interacted with surface water. As such, they could give adverse effects on surficial environments and human health.

본 논문에서는 황사 발원지 (타클라마칸, 알라샨, 오도스 사막 및 황토고원) 토양 시료의 지구화학적 특성을 규명하고, 이들이 지표환경과 인체에 미치는 영향을 알아보고자 하였다. 중국 건조지역에서 채취한 토양 시료 내 주원소 함량의 공간적 변화는 각 지역별로 크지 않았으며, 이는 각 지역 내 토양이 오랜 기간 동안 바람에 의해 균질하게 혼합된 것으로 해석된다. 한편 미량원소의 경우에는, 시료 채취 지점에 따라 미약한 함량의 차이를 나타낸다. 이들 중 Cr, Cu, As, Co, Ni, V, Y, Sc, Sn, Pb, Zn, Cd, Cs, Li, Th, U 등은 원소 간에 서로 양의 상관관계를 보이며, 이들의 특성은 황토고원과 다른 사막 (타클라마칸, 알라샨 및 오도스 사막) 토양에서 뚜렷하게 구분된다. 모든 사막 및 황토고원 토양의 Fe의 지구화학적 존재형태는 대부분 "잔류형 (85% 이상)"으로 나타났으나, Mn 및 Ca의 존재형태는 사막에 따라 존재형태의 차이가 현저하게 나타났다. Mn은 황토고원 토양에서는 "산화철망간광물 수반형 (55.4%)"이, 그리고 타클라마칸 사막에서는 "탄산염광물 수반형 (33.8%)"이 다른 사막 토양에 비해 2-5배 높게 나타났다. 또한 Ca의 경우에는 타클라마칸 및 알라샨 사막 토양에서 "탄산염광물 수반형"이 각각 75.9% 및 50.5%로 높게 나타났으나, 황토고원 (6.6%)과 오도스 사막 (2.1%)에서는 낮게 나타났다. 사막 및 황토고원 내 미량원소의 이동도를 기준으로 이들 미량원소를 5개의 그룹으로 분류하였으며, Cd, Pb 및 Cu의 이동도가 각각 87%, 33% 및 30% 이상으로 나타났다. 따라서 사막 및 황토고원 내 Cd, Pb 및 Cu는 지표수 등과 반응하였을 때 쉽게 용해되어 지표환경 및 인체 건강에 악영향을 줄 가능성이 있음을 지시하고 있다.

Keywords

References

  1. Chun, Y.S., Cho, K.S., Kim, Y.H. and Lee, J.K. (2003) The Features of Asian Dust Events Originated in Keoeolchin Sandy Land. Journal of the Korean meteorological society, v.39, p.251-263.
  2. Banerjee, A.D.K. (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ. Pollut., v.123, p.95-105. https://doi.org/10.1016/S0269-7491(02)00337-8
  3. Do, J.Y., Kim, K.W., Kim, Y.J. and Ryu, J.Y. (2009) Evaluation of deposited particulate on stone monuments in the national park area of Gyeongju, Korea. Journal of the Korean Physical Society, v.54, p.2055-2059. https://doi.org/10.3938/jkps.54.2055
  4. Hickey, M.G. and Kittrick, J.A. (1984) Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals. J. Environ. Qual., v.13, p.372-376.
  5. Jeong, G.Y. (2008) Bulk and single-particle mineralogy of Asian dust and a comparison with its source soils. J. Geophys. Res., v.113, D02208, doi:10.1029/2007JD008606.
  6. Jeong, G.Y. and Lee, K.S. (2010) A mineral tracer toward high-resolution dust provenance on the Chinese Loess Plateau: SEM, TEM, and sulfur isotopes of sulfate inclusions in biotite. American Mineralogist, v.95, p.64-72. https://doi.org/10.2138/am.2010.3234
  7. Jeong, G.Y., Hillier, S. and Kemp, R.A. (2011) Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau. Quaternary Research, v.75, p.245-255. https://doi.org/10.1016/j.yqres.2010.09.001
  8. Kim, K-H., Kang, C-H., Ma, C-J., Lee, J-H., Choi, K-C. and Youn, Y-H. (2008a) Airborne cadmium in spring season between Asian dust and non-Asian dust periods in Korea. Atmospheric Environment, v.42, p.623-631. https://doi.org/10.1016/j.atmosenv.2007.10.014
  9. Kim, K.W., Do, J.Y., Kim, Y.J., Youn, M.Y. and Ryu, J.Y. (2008b) Measurement of Submicron Aerosols in the Urban Area of Seoul and in the National Park Area of Gyeongju Using PIXE Analysis. Journal of the Korean Physical Society, v.52, p.896-903. https://doi.org/10.3938/jkps.52.896
  10. Kwon, Y.I., Lee, S.G., Yu, K.M., Shin, J.B. and Kim, K.H. (2004a) Geochemical characteristics of the surface sediments of Ordos and Alashan deserts, China: eolian sediment provenance and fingerprint. Journal of the Geological Society of Korea, v.40, p.119-132.
  11. Kwon, Y.I., Lee, S.G., Kim, K.H., Shin, J.B. and Yu, K.M. (2004b) Geochemical characteristics of the surface sediments from the middle-to eastern Taklimakan desert, China. Journal of the Geological Society of Korea, v.40, p.383-393.
  12. Kwon, Y.I., Shin, J.B. and Yu, K.M. (2004c) Scanning cathodoluminescence characteristics of the surface quartz grains of Ordos and Alashan deserts, China: eolian quartz provenance and fingerprint. Journal of the Geological Society of Korea, v.39, p.423-230.
  13. KMA homepage (http://www.kma.go.kr), Korea Meteorological Administration.
  14. Lee, J-T., Son, J-Y. and Cho, Y-S. (2007) A comparison of mortality related to urban air particles between periods with Asian dust days and without Asian dust days in Seoul, Korea, 2000-2004. Environmental Research, v.105, p.409-413. https://doi.org/10.1016/j.envres.2007.06.004
  15. Lee, P.K., Yu, Y., Yun, S. and Mayer, B. (2005) Metal contamination and solid phase partitioning of metals in urban roadside sediments. Chemosphere, v.60, p.672-689. https://doi.org/10.1016/j.chemosphere.2005.01.048
  16. Lee, S.Y., Choi, H.K., Lee, K.J., Jung, J.Y., Hur, G.Y., Jung, K.H., Kim, J.H., Shin, C., Shim, J.J., In, K.H., Kang, K.H. and Yoo, S.H. (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J. Immunother, v.32, p.22-28. https://doi.org/10.1097/CJI.0b013e31818ac2f7
  17. Masatoshi Honda and Hiroshi Shimizu. (1998) Geochemical, mineralogical and sedimentological studies on the Taklimakan desert sands. Sedimentology, v.45, p.1125-1143. https://doi.org/10.1046/j.1365-3091.1998.00202.x
  18. Oh, H.K., Lee, J.J., Lee, J.Y. and Park, J.H. (2007) Development of a Cultivation Method for Detecting Antibiotic Resistant Microorganisms from Various Water Samples. Journal of Korean Society of Civil Engineers, v.27, p.711-717.
  19. Ro, C-U., Oh, K-Y., Kim, H-K., Chun, Y-S., Osan, J., de Hoog, J. and Grieken, R.V. (2001) Chemical speciation of individual atmospheric particles using low-Z electron probe X-ray microanalysis: characterizing "Asian Dust" deposited with rain water in Seoul, Korea. Atmospheric Environment, v.35, p.4995-5005. https://doi.org/10.1016/S1352-2310(01)00287-4
  20. Shin, S.A., Han, J.S., Hong, Y.D., Ahn, J.Y., Moon, K.J., Lee, S.J. and Kim, S.D. (2005) Chemical Composition and Features of Asian Dust Observed in Korea (2000-2002). Journal of Korean Society for Atmospheric Environment, v.21, p.119-129.
  21. Sietronics (1996) SIROQUANT: A quantitative XRD software. Sietronics Pty Limited, Belconnen ACT, Australia.
  22. Taylor, J.C. (1991) Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffraction, v.6, p.2-9. https://doi.org/10.1017/S0885715600016778
  23. Tessier, A., Campell, P.G.C. and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal.Chem., v.51, p.844-851. https://doi.org/10.1021/ac50043a017
  24. Wilkening, K.E., Barrie, L.A. and Engle, M.A. (2000) Trans-Pacific air pollution. Science, v.290, p.65-67. https://doi.org/10.1126/science.290.5489.65
  25. Youm, S.J. and Lee, P.K. (2008) Source Identification for Asian Dust Deposited on Domestic Area Using Sr-Nd Isotope Ratios in Spring, 2007. Econ. Environ. Geol., v.41, p.315-326.

Cited by

  1. Lead isotopes combined with a sequential extraction procedure for source apportionment in the dry deposition of Asian dust and non-Asian dust vol.210, 2016, https://doi.org/10.1016/j.envpol.2015.12.010
  2. Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2008 vol.19, pp.1, 2014, https://doi.org/10.7857/JSGE.2014.19.1.008
  3. Geochemical Characteristics and Pollution Level of Heavy Metals of Asian Dust in Daejeon Area, 2007 (spring season) vol.45, pp.3, 2012, https://doi.org/10.9719/EEG.2012.45.3.217