DOI QR코드

DOI QR Code

Hydro-geochemical Nature and Nitrates Contamination Charecters of Groundwater in the Youngdong, Chungbuk Province

충북 영동지역 지하수의 수리지화학적 특성 및 질산염 오염 특성

  • Lee, In-Gyerong (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choi, Sang-Hoon (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 이인경 (충북대학교 지구환경과학과) ;
  • 최상훈 (충북대학교 지구환경과학과)
  • Received : 2011.12.01
  • Accepted : 2012.02.12
  • Published : 2012.02.28

Abstract

Major ions and nitrogen isotopic analyses were performed to determine the geochemical characters and to identify the source of nitrate of the shallow groundwater around agricultural field in the Youngdong area. The pH value of groundwater ranges from 60. to 8.2 (pH 7.2, mean). The average of EC, Eh and DO is 369 ${\mu}S/cm$ (70~729 ${\mu}S/cm$), 165.6 mV (29~383.2 mV), 4.3 mg/L (1.8~8.0 mg/L) respectively. The ion concentraion of groundwater was in the order of $Ca^{2+}$>$Na^{2+}$>$Mg^{2+}$>$K^{2+}$ and ${HCO_3}^-$>${NO_3}^-$>${SO_4}^{2-}$>$Cl^-$>$F^-$. Most of groundwater is Ca-$HCO_3$ type. The groundwater was affected by water-rock interaction in the shallow depth. Some groundwater is Ca-Cl or Na-$HCO_3$ (2.5%) type that was due to agricultural activities. The $NO_3$_N concetration of grondwater range from 10.2 mg/l to 26.9 mg/l, which show that this area is under nitrate pollution. ${\delta}^{15}N-NO_3$ value of the groundwater is the origins of are a combination of animal wastes and man-made fertilizers.

농업지역인 충북 영동 지역 지하수의 지화학적 특성과 질산염의 기원을 규명하기 위하여 지화학 및 질소동위원소 연구가 수행되었다. 지하수의 pH는 평균 7.2 (6.0~8.2)로 약산성 내지 약알칼리성으로 나타났다. 지하수의 평균 전기전도도, 산화환원전위 및 용존산소량은 각각 369 ${\mu}S/cm$ (70~729 ${\mu}S/cm$), 165.6 mV (29-383.2 mV), 4.3 mg/L(1.8~8.0 mg/L)이다. 지하수 내 양이온을 함량이 높은 순으로 나열하면, $Ca^{2+}$>$Na^{2+}$>$Mg^{2+}$>$K^{2+}$이고, 음이온의 경우는 ${HCO_3}^-$>${NO_3}^-$>${SO_4}^{2-}$>$Cl^-$>$F^-$이다. 연구지역 지하수의 대부분은 물-암석과의 반응으로 기인된 Ca-$HCO_3$ 유형으로 나타났으며, Ca-Cl 유형 (2.5%) 과 Na-$HCO_3$ (2.5%) 유형은 농업활동 등의 영향으로 전이된 것으로 밝혀졌다. 지하수 내 질산성 질소의 함량은 10.2 mg/l~26.9 mg/l 범위로 검출되어 오염이 우려되는 것으로 밝혀졌다. 지하수 내 질산성 질소의 기원을 파악하기 위한 질소 동위원소 분석 결과, 질산성 질소의 동위원소비 (${\delta}^{15}N_{-}NO_3$)는 1.9‰~19.4‰ (평균 10.1‰)로 측정되었으며, 동위원소비에 따른 질산염의 기원은 축사의 동물 분뇨나 농지에 시비된 유기물 비료임을 나타낸다.

Keywords

References

  1. Appelo, C.A.J. and Postma, D. (1999) Geochemistry, groundwater and pollution. A.A. Balkema, Rotterdam, 535p.
  2. Aravena, R., Evans, M.L. and Cherry, J.A. (1993) Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems. Ground Water, v.31, p.180-186. https://doi.org/10.1111/j.1745-6584.1993.tb01809.x
  3. Canter, L.W. (1997) Nitrate in groundwater. CRC Press, Boca Raton. p.1-109.
  4. Chae, G.T, Yun, S.T, Mayer, B., Choi, B.Y, Kim, K.H, Kwon, J.S. and Yu, S.Y. (2009) Hydrochemical and stable isotopic assement of nitrate contamination in an alluvial apuifer underneath a riverside agricultural field. Agricultural Water Management, v.96, p.1819-1827. https://doi.org/10.1016/j.agwat.2009.08.001
  5. Fennesy, M.S. and Cronk, J.K. (1997) The effectiveness and restoration potential of riparian ecotones for the management of nonpoint source pollution, particularly nitrate. Crit. Rev. Environ. Sci. Technol., v.27, p.285-317. https://doi.org/10.1080/10643389709388502
  6. Fetter, C.W. (1988) Applied Hydrogeology, Longman Higher Education, 2nd edition, 608p.
  7. Heaton, T.H.E. (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere and atmosphere. A review Chem. Geol., v.59, p.87-102. https://doi.org/10.1016/0168-9622(86)90059-X
  8. Jeon, S.R., Park, S.J., Kim, H.S., Jung, S.K., Lee, Y.U. and Chung, J.I (2011) Hydrogeochemical characteristics and estimation of nitrate contamination sources of groundwater in the Sunchang area, Korea. J. of the Geological society of Korea, v.47 p.185-197.
  9. Jeong, C.H. (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. Journal of Hydrology, v.253, p.194-200. https://doi.org/10.1016/S0022-1694(01)00481-4
  10. Kellman, L.M. and Hillarire-Marcel, C. (2003) Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture, Ecosystems and Environment, v.95, p.87-102. https://doi.org/10.1016/S0167-8809(02)00168-8
  11. Kendall, C. (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall, C., McDonnell, J.J. (Eds), Isotope tracers in the catchment hydrology. Elsevier, Amsterdam, The Netherlands, p.519-576.
  12. Kim, D.H., Jang, T.W., Kim, W.Y. and Hwang, J.H (1978) Geological report of the Okcheon sheet(1:50,000). Korea Institute of Geoscience and Mineral Resources.
  13. Kim, D.H. and Lee, B.J (1986) Geological report of the Cheongsan sheet(1:50,000). Korea Institute of Geoscience and Mineral Resources.
  14. Kim, K.B. and Hwang, J.H (1986) Geological report of the Cheongsan sheet(1:50,000). Korea Institute of Geoscience and Mineral Resources.
  15. Kim, O,J., Lee, D.S. and Lee, H.Y (1968) Geological report of the Boeun sheet(1:50,000). Korea Institute of Geoscience and Mineral Resources.
  16. Kohl, D.A., Shearer, G.B. and Commoner, B. (1971) Fertilizer nitrogen: contribution to nitrate in surface water in a Corn Belt watershed, Science, 174, 1331-1334. https://doi.org/10.1126/science.174.4016.1331
  17. Komor, S.C. and Anderson Jr., H.W. (1993) Nitrogen isotopes as indicators of nitrate sources in Minesota sand-plain aquifers. Ground water, v.31 p.260-270. https://doi.org/10.1111/j.1745-6584.1993.tb01818.x
  18. Kreitler, C.W. and Browning, L.A. (1983) Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers : natural sources versus human pollution. J. Hydrol., v.61, p.285-301. https://doi.org/10.1016/0022-1694(83)90254-8
  19. Lee, J.U, Cheon, H.T. and John, Y.W. (1997) Geomchemical characteristics of deep granitic groundwater in Korea. Jounal of the Korean society of groundwater environment, v.4, p.199-211.
  20. Medison, R.J. and Brunett, J.O. (1985) Overview of the occurrence of nitrate in groudwater of the United states, National Water Summary 1984 Hydrologic Events, selected water quality trends, and groundwater resources. U.S. geoloical survey Water-supply paper, 2275, p.93-105.
  21. Min, J.H., Yun, S.T., Kim, S.H. and Kim, D.J. (2003) Geologic controls on the chemical behavior of nitrate in reverside alluvial aquifer. Korea. Hydrol. Process, v.17, p.1197-1211. https://doi.org/10.1002/hyp.1189
  22. Ministry of Agriculture and Korea Rural Corporation (2009) Report on agricultural groundwater management in Ogcheong area (Okcheongun), 276p.
  23. Mueller, D.K. and Helsel, D.R. (1996) "Nutrients in the nations's water-Too much of a good thing?" U.S Geological Survey Circular 1136.
  24. Piper, A.M. (1944) A graphic procedure in the geochemical interpretation of water analyses. Am. Geophys. Union Trans., p.914-923.
  25. Saether, O.M. and De Caritat, P. (1997) Geochemical processes, weathering and groundwater recharge in catchments. A.A. Balkema, Rotterdam, Brookfield, 400p.
  26. Wilson, G.B., Andrews and Bath, A.H. (1994) The nitrogen isotope composition of groundwater nitrates from the East Midlands Triassic sandstone aquifer, England. Journal of Hydrology, v.157, p.32-46.

Cited by

  1. Characterization of Nitrate Contamination and Hydrogeochemistry of Groundwater in an Agricultural Area of Northeastern Hongseong vol.18, pp.3, 2013, https://doi.org/10.7857/JSGE.2013.18.3.033