DOI QR코드

DOI QR Code

Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats

  • Lee, Bom-Bi (Acupuncture and Meridian Science Research Center) ;
  • Sur, Bong-Jun (The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University) ;
  • Shim, In-Sop (Acupuncture and Meridian Science Research Center) ;
  • Lee, Hye-Jung (Acupuncture and Meridian Science Research Center) ;
  • Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center)
  • Received : 2011.12.08
  • Accepted : 2012.03.03
  • Published : 2012.04.30

Abstract

We examine whether Phellodendron amurense (PA) and its major alkaloid compound, berberine (BER), improved memory defects caused by administering scopolamine in rats. Effects of PA and BER on the acetylcholinergic system and pro-inflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses for 14 days of PA (100 and 200 mg/kg, i.p.) and BER (20 mg/kg, i.p.) 30 min before scopolamine injection (2 mg/kg, i.p.). Daily administration of PA and BER improved memory impairment as measured by the passive avoidance test and reduced the escape latency for finding the platform in the Morris water maze test. Administration of PA and BER significantly alleviated memory-associated decreases in cholinergic immunoreactivity and restored brain-derived neurotrophic factor and cAMP-response element-binding protein mRNA expression in the hippocampus. PA and BER also decreased significantly the expression of proinflammatory cytokines such as interleukin-$1{\beta}$, tumor necrosis factor-${\alpha}$ and cyclooxygenase-2 mRNA in the hippocampus. These results demonstrated that PA and BER had significant neuroprotective effects against neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that PA and BER may be useful as therapeutic agents for improving cognitive functioning by stimulating cholinergic enzyme activity and alleviating inflammatory responses.

Keywords

References

  1. Blennow K, de Leon MJ, Zetterberg H. Alzheimer's disease. Lancet. 2006;368:387-403. https://doi.org/10.1016/S0140-6736(06)69113-7
  2. Hasselmo ME. The role of acetylcholine in learning and memory. Curr Opin Neurobiol. 2006;16:710-715. https://doi.org/10.1016/j.conb.2006.09.002
  3. Drever BD, Anderson WG, Johnson H, O'Callaghan M, Seo S, Choi DY, Riedel G, Platt B. Memantine acts as a cholinergic stimulant in the mouse hippocampus. J Alzheimers Dis. 2007;12:319-333. https://doi.org/10.3233/JAD-2007-12405
  4. Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34:1307-1350. https://doi.org/10.1016/j.neubiorev.2010.04.001
  5. Mohapel P, Leanza G, Kokaia M, Lindvall O. Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging. 2005;26:939-946. https://doi.org/10.1016/j.neurobiolaging.2004.07.015
  6. Solfrizzi V, D'Introno A, Colacicco AM, Capurso C, Todarello O, Pellicani V, Capurso SA, Pietrarossa G, Santamato V, Capurso A, Panza F. Circulating biomarkers of cognitive decline and dementia. Clin Chim Acta. 2006;364:91-112. https://doi.org/10.1016/j.cca.2005.06.015
  7. Viau S, Maire MA, Pasquis B, Gregoire S, Fourgeux C, Acar N, Bretillon L, Creuzot-Garcher CP, Joffre C. Time course of ocular surface and lacrimal gland changes in a new scopolamine-induced dry eye model. Graefes Arch Clin Exp Ophthalmol. 2008;246:857-867. https://doi.org/10.1007/s00417-008-0784-9
  8. Wang JF, Wei DQ, Chou KC. Drug candidates from traditional chinese medicines. Curr Top Med Chem. 2008;8:1656-1665. https://doi.org/10.2174/156802608786786633
  9. Hara H, Kataoka S, Anan M, Ueda A, Mutoh T, Tabira T. The therapeutic effects of the herbal medicine, Juzen-taiho-to, on amyloid-beta burden in a mouse model of Alzheimer's disease. J Alzheimers Dis. 2010;20:427-439. https://doi.org/10.3233/JAD-2010-1381
  10. Park EK, Rhee HI, Jung HS, Ju SM, Lee YA, Lee SH, Hong SJ, Yang HI, Yoo MC, Kim KS. Antiinflammatory effects of a combined herbal preparation (RAH13) of Phellodendron amurense and Coptis chinensis in animal models of inflammation. Phytother Res. 2007;21:746-750. https://doi.org/10.1002/ptr.2156
  11. Zhang J, Yang JQ, He BC, Zhou QX, Yu HR, Tang Y, Liu BZ. Berberine and total base from rhizoma coptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease. Saudi Med J. 2009;30:760-766.
  12. Bhutada P, Mundhada Y, Bansod K, Tawari S, Patil S, Dixit P, Umathe S, Mundhada D. Protection of cholinergic and antioxidant system contributes to the effect of berberine ameliorating memory dysfunction in rat model of streptozotocininduced diabetes. Behav Brain Res. 2011;220:30-41. https://doi.org/10.1016/j.bbr.2011.01.022
  13. Zhu F, Qian C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer's disease. BMC Neurosci. 2006;7:78. https://doi.org/10.1186/1471-2202-7-78
  14. Hung TM, Dang NH, Kim JC, Jang HS, Ryoo SW, Lee JH, Choi JS, Bae K, Min BS. Alkaloids from roots of Stephania rotunda and their cholinesterase inhibitory activity. Planta Med. 2010;76:1762-1764. https://doi.org/10.1055/s-0030-1249814
  15. Lee BB, Chae YB, Kwon YK, Yang CH, Kim MR, Kim KJ, Hahm DH, Lee HJ, Shim IS. Inhibitory action of cortex phellodendris on nicotine-induced behavioral sensitization. Korean J Oriental Physiology & Pathology. 2004;18:767-773.
  16. Shahidi S, Komaki A, Mahmoodi M, Atrvash N, Ghodrati M. Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Res Bull. 2008;76:109-113. https://doi.org/10.1016/j.brainresbull.2008.01.003
  17. Mohamed AF, Matsumoto K, Tabata K, Takayama H, Kitajima M, Watanabe H. Effects of Uncaria tomentosa total alkaloid and its components on experimental amnesia in mice: elucidation using the passive avoidance test. J Pharm Pharmacol. 2000;52:1553-1561. https://doi.org/10.1211/0022357001777612
  18. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. New York: Academic Press; 1986.
  19. Taylor BM, Kolbasa KP, Chin JE, Richards IM, Fleming WE, Griffin RL, Fidler SF, Sun FF. Roles of adhesion molecules ICAM-1 and alpha4 integrin in antigen-induced changes in microvascular permeability associated with lung inflammation in sensitized brown Norway rats. Am J Respir Cell Mol Biol. 1997;17:757-766. https://doi.org/10.1165/ajrcmb.17.6.2697
  20. Zhou HY, Wang D, Cui Z. Ferulates, amurenlactone A and amurenamide A from traditional Chinese medicine cortex Phellodendri Amurensis. J Asian Nat Prod Res. 2008;10:409-413. https://doi.org/10.1080/10286020801966534
  21. Kulkarni SK, Dhir A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res. 2010;24:317-324. https://doi.org/10.1002/ptr.2968
  22. Gu L, Li N, Gong J, Li Q, Zhu W, Li J. Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. J Infect Dis. 2011;203:1602-1612. https://doi.org/10.1093/infdis/jir147
  23. Jonasson Z. Meta-analysis of sex differences in rodent models of learning and memory: a review of behavioral and biological data. Neurosci Biobehav Rev. 2005;28:811-825. https://doi.org/10.1016/j.neubiorev.2004.10.006
  24. Lee B, Park J, Kwon S, Park MW, Oh SM, Yeom MJ, Shim I, Lee HJ, Hahm DH. Effect of wild ginseng on scopolamineinduced acetylcholine depletion in the rat hippocampus. J Pharm Pharmacol. 2010;62:263-271. https://doi.org/10.1211/jpp.62.02.0015
  25. Blokland A, Geraerts E, Been M. A detailed analysis of rats' spatial memory in a probe trial of a Morris task. Behav Brain Res. 2004;154:71-75. https://doi.org/10.1016/j.bbr.2004.01.022
  26. Sharma D, Puri M, Tiwary AK, Singh N, Jaggi AS. Antiamnesic effect of stevioside in scopolamine-treated rats. Indian J Pharmacol. 2010;42:164-167. https://doi.org/10.4103/0253-7613.66840
  27. Kotani S, Yamauchi T, Teramoto T, Ogura H. Pharmacological evidence of cholinergic involvement in adult hippocampal neurogenesis in rats. Neuroscience. 2006;142:505-514. https://doi.org/10.1016/j.neuroscience.2006.06.035
  28. Kumar R, Jaggi AS, Singh N. Effects of erythropoietin on memory deficits and brain oxidative stress in the mouse models of dementia. Korean J Physiol Pharmacol. 2010;14:345-352. https://doi.org/10.4196/kjpp.2010.14.5.345
  29. Giacobini E. Long-term stabilizing effect of cholinesterase inhibitors in the therapy of Alzheimer' disease. J Neural Transm Suppl. 2002;62:181-187.
  30. Wei J, Lu DX, Qi RB, Wang HD, Jiang XH. Effect of Kangshuai Yizhi Formula I on learning and memory dysfunction induced by scopolamine in mice. Chin J Integr Med. 2010;16:252-257. https://doi.org/10.1007/s11655-010-0252-3
  31. Counts SE, He B, Che S, Ginsberg SD, Mufson EJ. Galanin hyperinnervation upregulates choline acetyltransferase expression in cholinergic basal forebrain neurons in Alzheimer's disease. Neurodegener Dis. 2008;5:228-231. https://doi.org/10.1159/000113710
  32. Williams CM, El Mohsen MA, Vauzour D, Rendeiro C, Butler LT, Ellis JA, Whiteman M, Spencer JP. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic Biol Med. 2008;45: 295-305. https://doi.org/10.1016/j.freeradbiomed.2008.04.008
  33. Vaynman S, Ying Z, Gomez-Pinilla F. Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience. 2003;122:647-657. https://doi.org/10.1016/j.neuroscience.2003.08.001
  34. Kida S, Josselyn SA, Pena de Ortiz S, Kogan JH, Chevere I, Masushige S, Silva AJ. CREB required for the stability of new and reactivated fear memories. Nat Neurosci. 2002;5:348-355. https://doi.org/10.1038/nn819
  35. Guzowski JF, McGaugh JL. Antisense oligodeoxynucleotidemediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci USA. 1997;94:2693-2698. https://doi.org/10.1073/pnas.94.6.2693
  36. Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD. From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Mem. 2002;9:224-237. https://doi.org/10.1101/lm.51202
  37. Xu J, Rong S, Xie B, Sun Z, Deng Q, Wu H, Bao W, Wang D, Yao P, Huang F, Liu L. Memory impairment in cognitively CREB phosphorylation: reversal by procyanidins extracted from the lotus seedpod. J Gerontol A Biol Sci Med Sci. 2010;65:933-940.
  38. Hong SW, Yang JH, Joh EH, Kim HJ, Kim DH. Gypenoside TN-2 ameliorates scopolamine-induced learning deficit in mice. J Ethnopharmacol. 2011;134:1010-1013. https://doi.org/10.1016/j.jep.2011.02.002
  39. Xue W, Hu JF, Yuan YH, Sun JD, Li BY, Zhang DM, Li CJ, Chen NH. Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory. Acta Pharmacol Sin. 2009;30:1211-1219. https://doi.org/10.1038/aps.2009.112
  40. Dickson DW, Lee SC, Mattiace LA, Yen SH, Brosnan C. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease. Glia. 1993;7:75-83. https://doi.org/10.1002/glia.440070113
  41. Eikelenboom P, Zhan SS, van Gool WA, Allsop D. Inflammatory mechanisms in Alzheimer's disease. Trends Pharmacol Sci. 1994;15:447-450. https://doi.org/10.1016/0165-6147(94)90057-4
  42. Rothwell N, Allan S, Toulmond S. The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest. 1997;100:2648-2652. https://doi.org/10.1172/JCI119808
  43. Feher A, Juhasz A, Rimanoczy A, Kalman J, Janka Z. Association study of interferon-$\gamma$, cytosolic phospholipase A2, and cyclooxygenase-2 gene polymorphisms in Alzheimer disease. Am J Geriatr Psychiatry. 2010;18:983-987. https://doi.org/10.1097/JGP.0b013e3181e70c05
  44. Fujimi K, Noda K, Sasaki K, Wakisaka Y, Tanizaki Y, Iida M, Kiyohara Y, Kanba S, Iwaki T. Altered expression of COX-2 in subdivisions of the hippocampus during aging and in Alzheimer's disease: the Hisayama Study. Dement Geriatr Cogn Disord. 2007;23:423-431. https://doi.org/10.1159/000101957
  45. Jung K, Lee B, Han SJ, Ryu JH, Kim DH. Mangiferin ameliorates scopolamine-induced learning deficits in mice. Biol Pharm Bull. 2009;32:242-246. https://doi.org/10.1248/bpb.32.242
  46. Kumar A, Seghal N, Padi SV, Naidu PS. Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. Eur J Pharmacol. 2006;551:58-66. https://doi.org/10.1016/j.ejphar.2006.08.076

Cited by

  1. 황련해독탕(黃連解毒湯)의 아토피 피부염 개선 효과(效果) vol.21, pp.1, 2012, https://doi.org/10.14374/hfs.2013.21.1.080
  2. Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats vol.14, pp.None, 2012, https://doi.org/10.1186/1472-6882-14-338
  3. Experimental evidence for the potential of lycopene in the management of scopolamine induced amnesia vol.5, pp.89, 2015, https://doi.org/10.1039/c5ra13160j
  4. Phytochemicals That Regulate Neurodegenerative Disease by Targeting Neurotrophins: A Comprehensive Review vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/814068
  5. Phenyl-β-d-Glucopyranoside Exhibits Anti-inflammatory Activity in Lipopolysaccharide-Activated RAW 264.7 Cells vol.38, pp.3, 2015, https://doi.org/10.1007/s10753-014-0072-2
  6. The Anti-angiogenic Potential of a Phellodendron amurense Hot Water Extract in Vitro and ex Vivo vol.25, pp.6, 2012, https://doi.org/10.5352/jls.2015.25.6.693
  7. Differential metformin dose-dependent effects on cognition in rats: role of Akt vol.233, pp.13, 2012, https://doi.org/10.1007/s00213-016-4301-2
  8. Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice vol.16, pp.None, 2012, https://doi.org/10.1186/s12906-016-1050-z
  9. Neuroprotective effect of ipriflavone against scopolamine-induced memory impairment in rats vol.234, pp.20, 2017, https://doi.org/10.1007/s00213-017-4690-x
  10. The Effects of Chunghyul-Dan, an Agent of Korean Medicine, on a Mouse Model of Traumatic Brain Injury vol.2017, pp.None, 2012, https://doi.org/10.1155/2017/7326107
  11. Mitochondrial involvement in memory impairment induced by scopolamine in rats vol.39, pp.7, 2017, https://doi.org/10.1080/01616412.2017.1312775
  12. An ATR–FTIR Sensor Unraveling the Drug Intervention of Methylene Blue, Congo Red, and Berberine on Human Tau and Aβ vol.8, pp.7, 2012, https://doi.org/10.1021/acsmedchemlett.7b00079
  13. Phellodendron chinense Schneid: A novel yellow-emitting luminescent material for white light-emitting diodes vol.7, pp.None, 2012, https://doi.org/10.1038/s41598-017-09291-1
  14. Anti-neuroinflammatory Potential of Natural Products in Attenuation of Alzheimer's Disease vol.9, pp.None, 2012, https://doi.org/10.3389/fphar.2018.00548
  15. A Natural Antibacterial-Antioxidant Film from Soy Protein Isolate Incorporated with Cortex Phellodendron Extract vol.10, pp.1, 2012, https://doi.org/10.3390/polym10010071
  16. Ameliorative potential of desalted Salicornia europaea L . extract in multifaceted Alzheimer’s-like scopolamine-induced amnesic mice model vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-25381-0
  17. Berberine: A Plant-derived Alkaloid with Therapeutic Potential to Combat Alzheimer’s disease vol.19, pp.3, 2019, https://doi.org/10.2174/1871524919666190820160053
  18. A New Method for Simultaneous Determination of Phenolic Acids, Alkaloids and Limonoids in Phellodendri Amurensis Cortex vol.24, pp.4, 2012, https://doi.org/10.3390/molecules24040709
  19. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential vol.17, pp.6, 2019, https://doi.org/10.2174/1570159x16666180419141613
  20. Protein kinase C is involved in the neuroprotective effect of berberine against intrastriatal injection of quinolinic acid‐induced biochemical alteration in mice vol.23, pp.9, 2012, https://doi.org/10.1111/jcmm.14522
  21. Fucoidan-Rich Substances from Ecklonia cava Improve Trimethyltin-Induced Cognitive Dysfunction via Down-Regulation of Amyloid β Production/Tau Hyperphosphorylation vol.17, pp.10, 2019, https://doi.org/10.3390/md17100591
  22. Protective effect of surface-modified berberine nanoparticles against LPS-induced neurodegenerative changes: a preclinical study vol.9, pp.5, 2019, https://doi.org/10.1007/s13346-019-00626-1
  23. Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies vol.19, pp.None, 2012, https://doi.org/10.1186/s12906-019-2510-z
  24. Boosting the autophagy‐lysosomal pathway by phytochemicals: A potential therapeutic strategy against Alzheimer's disease vol.72, pp.11, 2012, https://doi.org/10.1002/iub.2369
  25. Nanotechnology-Based Strategies for Berberine Delivery System in Cancer Treatment: Pulling Strings to Keep Berberine in Power vol.7, pp.None, 2012, https://doi.org/10.3389/fmolb.2020.624494
  26. Scrophularia buergeriana Extract (Brainon) Improves Scopolamine-Induced Neuronal Impairment and Cholinergic Dysfunction in Mice through CREB-BDNF Signaling Pathway vol.11, pp.9, 2021, https://doi.org/10.3390/app11094286
  27. Neuroprotective potential of berberine in modulating Alzheimer’s disease via multiple signaling pathways vol.45, pp.10, 2012, https://doi.org/10.1111/jfbc.13936
  28. Pharmacological implications of ipriflavone against environmental metal-induced neurodegeneration and dementia in rats vol.28, pp.46, 2012, https://doi.org/10.1007/s11356-021-15193-7
  29. Berberine modulates hyper-inflammation in mouse macrophages stimulated with polyinosinic-polycytidylic acid via calcium-CHOP/STAT pathway vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-90752-z