DOI QR코드

DOI QR Code

Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV

소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구

  • 류민형 (한양대학교 기계공학과 대학원) ;
  • 조이상 (한양대학교 기계공학과 대학원) ;
  • 조진수 (한양대학교 기계공학부)
  • Received : 2011.11.17
  • Accepted : 2012.04.18
  • Published : 2012.05.01

Abstract

The ducted fan for a small UAV propulsion can reconnoiter and observe in a town and a small area, it has better thrust efficiency and a long endurance than propeller. Thrust characteristics of hover and for ward flight condition for the ducted fan UAV is important issue to improve a endurance. The unsteady 3-dimensional flow fields of the ducted fan UAV is essential to stable flight. In this paper, to verify the design results of the ducted fan and to investigate a stable aeronautical characteristic, the thrust performance and the unsteady 3-dimensional flow fields are measured. Thrust characteristics for the hovering and the forward flight conditions are measured by the 6-components balance system in the subsonic wind tunnel. The unsteady 3-dimensional flow fields are analyzed by using a stationary $45^{\circ}$ slanted hot-wire technique. The swirl velocity is almost removed behind the stator blades. Therefore, the thrust performance of the ducted fan is improved and the flight stability is maintained.

덕티드팬을 추진 장치로 사용하는 소형 무인항공기는 도심 및 협소한 공간에서 정찰 및 감시에 사용 가능하며, 프로펠러에 비해 높은 추진 효율과 추력 특성을 나타낸다. 덕티드팬 무인항공기의 운용 거리와 비행 시간을 증가시키기 위해서는 정지 비행 및 전진 비행시의 추력 특성연구가 중요하며 비행 안정성 확보를 위해서는 비정상 3차원 유동 특성 연구가 필수적이다. 본 연구에서는 동익과 정익으로 구성된 덕티드팬의 설계 결과 검증과 안정적인 비행 특성을 확인하기 위해 덕티드팬의 추력 특성과 비정상 3차원 유동장을 계측하였다. 덕티드팬의 정지 및 전진 비행시의 추력 특성은 소형 아음속 풍동의 6분력 밸런스 시스템을 이용하여 측정되었고, 비정상 3차원 유동장은 $45^{\circ}$ 경사열선의 프로브 고정법에 의해 분석되었다. 덕티드팬의 덕트와 정익이 추력특성에 다소 큰 영향을 미치며, 정익에 의해 덕티드팬의 안정적인 비행이 가능함을 확인하였다.

Keywords

References

  1. Peter, V. B., "UAVs : an Overview," Air & Space Europe, Vol. 1, No. 516, 1999, pp. 43-47. https://doi.org/10.1016/S1290-0958(00)88869-3
  2. Andy, K., Osgar, J., and Paul, G., 2007, "Ducted Fan UAV Modeling and Simulation in Preliminary Design," AIAA Modeling & Simulation Technologies Conference and Exhibit, pp. 1-20.
  3. L. Lipera., J. D. Colbourne, M. B. Tischler., M. H. Mansur., M. C. Rotkowitz. and P. Patangui., "The Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing," American Helicopter Society 57th Annual Forum, Washington, DC, May 9-11, 2001.
  4. Martin, Preston. and Tung, Chee., "Performance and Flowfield Measurements on a 10-inch Ducted Rotor VTOL UAV," Proceeding of the 60th Annual Forum of the American Helicopter Society, Baltimore, MD, June 7-10, 2004.
  5. Fleming, J., Jones, T., Lusardi, J., Gelhausen, P. and Enns, D., "Improved Control of Ducted Fan VTOL UAVs in Crosswind Turbulence," AHS 4th Decennial Specialist's Conference on Aeromechanics, San Francisco, CA, Jan 21-23, 2004.
  6. Akturk, A., Shavalikul, A., and Camci, C., "PIV Measurements and Computational Study of a 5-Inch Ducted Fan for V/STOL UAV Applications," 47th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida, Jan 5-8, 2009.
  7. Mark H. Williams, Dalton, W. N. and Jinsoo Cho, "Unsteady Aerodynamic Analysis of Ducted Fans," AIAA Journal of Propulsion and Power, Vol.7, No.5, 1991, pp. 800-804. https://doi.org/10.2514/3.23394
  8. Grande, G., and Kool, P., "An Improved Experimental Method to Determine the Complete Reynolds Stress Tensor with a Single Rotating Slanting Hot Wire," The Institute of Physics, Vol. 14, 1981, pp. 196-201. https://doi.org/10.1088/0022-3735/14/2/014
  9. Bruun, H. H., Hot-Wire Anemometry, Oxford University Press, 1995.
  10. Whitfield, C., Kelly, J. C. and Barry, B., "A Three Dimensional Analysis of Rotor Wakes," Aero Quarterly, Vol. 23, 1972, Part 4.
  11. Lakshminarayana, B., 1981, "Techniques for Aerodynamics and Turbulence Measurements in Turbomachinery Rotors," Journal of Engineering for Power, Vol. 13, pp. 374-392.