Microwave-assisted TS-1 Membrane for the Separation of Ethylbenzene from Xylene Mixture

마이크로웨이브로 제조된 TS-1 Membrane을 이용한 혼합 자일렌에서의 에틸벤젠 고순도화

  • Jeon, Yu-Kwon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lee, Gi-Cheon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Chu, Young-Hwan (Department of New Energy.Resource Engineering, College of Science & Engineering, Sangji University) ;
  • Choi, Seong-Hwan (The 4th Research Team, Daedeok Research Institute, Honam Petrochemical Corp.) ;
  • Seo, Young-Jong (The 4th Research Team, Daedeok Research Institute, Honam Petrochemical Corp.) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • Received : 2012.04.17
  • Accepted : 2012.04.26
  • Published : 2012.04.30

Abstract

In this study, separation of ethylbenzene from mixed xylene was performed by using TS-1 zeolite membrane. TS-1 zeolite membranes were prepared by microwave synthesis and changing the reaction temperature. MFI-type TS-1 membranes are synthesized on alumina tubes by functional coating using 3-chloropropyltrimethoxysilane (3CP-TMS). On top surface of interlayer, nano TS-1 crystals were seeded. To form interlayer, microwave-assisted growth of TS-1 zeolite was carried out and thin zeolite layers were produced. All of the prepared membranes are tested to separate ethylbenzene from mixed xylene at different operating temperatures. TS-1 membrane with zeolite seed synthesized at $170^{\circ}C$ compared to 120, $140^{\circ}C$ shows the best ethylbenzene separation at the operation temperature of $200^{\circ}C$ from ternary mixed xylene containing certain composition of ethylbenzene/p-xylene/m-xylene. (separation factor : 2.64, ethylbenzene flux : 1703.0 mol/$m^2{\cdot}s{\cdot}Pa$).

본 연구에서는 혼합 자일렌에서 에틸벤젠을 분리하기 위하여 제올라이트 분리막을 이용하였다. 마이크로웨이브 합성 온도에 변화를 주어 제조한 TS-1 제올라이트 결정을 알루미나 튜브에 성장시키기 위해 3-chloropropyltrimethoxysilane를 코팅 후 TS-1 nano seed를 안착시키고 마이크로웨이브 합성법을 이용한 2차 성장을 통해 3~4 ${\mu}m$의 두께를 가지는 얇은 TS-1 제올라이트 분리막을 제조하였다. 제조한 분리막을 이용하여 에틸벤젠/메타자일렌/파라자일렌이 혼합된 혼합 자일렌으로부터 에틸벤젠을 분리하였다. 마이크로웨이브 합성 온도가 증가할수록 제올라이트 결정의 크기가 비례하여 증가하였다. 또한 반응기의 온도가 $200^{\circ}C$에서 가장 높은 투과 플럭스와 선택도를 가졌다. 가장 좋은 에틸벤젠 분리 성능을 보인 분리막은 마이크로웨이브 합성 온도가 $170^{\circ}C$인 분리막이고 선택도 값은 2.64였다(에틸벤젠 투과 플럭스 : 1703.0 mol/$m^2{\cdot}s{\cdot}Pa$).

Keywords

References

  1. J. B. Month and F. J. Llopis, "Isobaric vaporliquid equilibria of ethylbenzene + m-xylene and ethylbenzene + o-xylene systems at 6.66 and 26.66 kPa", J. Chem. Eng. Data, 39, 50 (1994). https://doi.org/10.1021/je00013a014
  2. M. Seko, H. Takeuchi, and T. Inada, "Scale-up for chromatographic separation of p-xylene and ethylbenzene", Ind. Eng. Chem. Prod. Res. Dev., 21, 656 (1982). https://doi.org/10.1021/i300008a029
  3. M. Seko, T. Mlyake, and K. Inada, "Economical p-xylene and ethylbenzene separated from mixed xylene", Ind. Eng. Chem. Prod. Res. Dev., 18, 4 (1979).
  4. Z.-Y. Gu, D.-Q Jiang, H.-F. Wang, X.-Y. Cui, and X.-P. Yan, "Adsorption and separation of xylene isomers and ethylbenzene on two Zn-terephthalate metal-organic frameworks", J. Phys. Chem. C., 114, 311 (2010). https://doi.org/10.1021/jp9063017
  5. Q. Liu, R. D. Noble, J. L. Falconer, and H. H. Funke, "Organics/water separation by pervaporation with a zeolite membrane", J. Membr. Sci., 117, 163 (1996). https://doi.org/10.1016/0376-7388(96)00058-0
  6. 김건중, 나세종, "다공성 제올라이트 멤브레인의 합성 및 알코올/물 분리에의 응용", 멤브레인, 9(2), 97 (1999).
  7. H. Ahn, H. Lee, and Y. Lee, "Pervaporation characteristics of NaA zeolite membrane for water/ ethanol mixture", Korean Chem. Eng. Res., 43(2), 243 (2005). https://doi.org/10.1140/epjb/e2005-00046-2
  8. 조문희, 공창인, 이용택, "소수성 ZSM-5 제올라이트 분리막을 이용한 n-부탄올/물 혼합물의 투과증발", 멤브레인, 21(4), 336 (2011).
  9. K. T. Jung and Y. G. Shul, "Preparation of ZSM-5 zeolite film and its formation mechanism", J. Membr. Sci., 191, 189 (2001). https://doi.org/10.1016/S0376-7388(01)00469-0
  10. 조철희, 여정구, 안영수, 한문희, 김용하, 현상훈, "Na형 Faujasite 제올라이트 분리막 형성 및 $CO_2/N_2$ 분리", 멤브레인, 17(3), 254 (2007).
  11. M. Taramasso, G. Perego, and B. Notari, "Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides", US Patent 4,410,501 (1983).
  12. K. T. Jung and Y. G. Shul, "A new method for the synthesis of TS-1 monolithic zeolite", Microporous and Mesoporous Materials, 21, 281 (1998). https://doi.org/10.1016/S1387-1811(98)00031-6
  13. A. Esposito, C. Neri, and F. Buonomo, "Process for oxidizing alcohols to aldehydes and/or ketones", US Patent 4,480,135 (1984).
  14. A. J. H. P. van der Pol, A. J. Verduyn, and J. H. C. van Hooff, "Why are some titanium silicalite-1 samples active and others not?", Appl. Catal. A, 92, 113 (1992). https://doi.org/10.1016/0926-860X(92)80310-9
  15. D. P. Serrano, R. Sanz, P. Pizarro, I. Moreno, P. de Frutos, and S. Blazquez, "Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation", Catalysis Today, 143, 151 (2009). https://doi.org/10.1016/j.cattod.2008.09.039
  16. C. D. Baertsch, H. H. Funke, J. L. Falconer, and R. D. Noble, "Permeation of aromatic hydrocarbon vapors through silicalite-zeolite membranes", J. Phys. Chem., 100, 7676 (1996). https://doi.org/10.1021/jp960226h
  17. X. Gua, J. Dong, T. M. Nenoff, and D. E. Ozokwelu, "Separation of p-xylene from multicomponent vapour mixtures using tubular MFI zeolite mmbranes", J. Membr. Sci., 280, 624 (2006). https://doi.org/10.1016/j.memsci.2006.02.020
  18. Z. Lai, M. Tsapatsis, and J. P. Nicolich, "Siliceous Zsm-5 membranes by secondary growth of b-oriented seed layers", Adv. Funct. Mater., 14, 7 (2004). https://doi.org/10.1002/adfm.200490001
  19. Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, "Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating", Nature, 389, 364 (1997). https://doi.org/10.1038/38699
  20. 박상언, 장종산, 노현석, 정광순, "제올라이트 막의 제조 및 응용", 멤브레인, 8(4), 177 (1998)
  21. S. E. Park, J. S. Chang, Y. K. Hwang, D. S. Kim, S. H. Jhung, and J. S. Hwang, "Supramolecular interactions and morphology control in microwave synthesis of nanoporous materials", Catalysis Surveys from Asia, 8, 91 (2004). https://doi.org/10.1023/B:CATS.0000026990.25778.a8
  22. Y. Hu, C. Liu, Y. Zhang, N. Ren, and Y. Tang, "Microwave-assisted hydrothermal synthesis of nanozeolites with controllable size", Microporous and Mesoporous Materials, 119, 306 (2009). https://doi.org/10.1016/j.micromeso.2008.11.005
  23. A. J. Burggraaf, "Single gas permeation of thin zeolite (MFI) membranes: theory and analysis of experimental observations", J. Membr. Sci., 155, 45 (1999). https://doi.org/10.1016/S0376-7388(98)00295-6
  24. G, Xomeritakis, Z, Lai, and M, Tsapatsis, "Separation of Xylene Isomer Vapors with Oriented MFI Membranes Made by Seeded Growth", Ind. Eng. Chem. Res., 40, 544 (2001). https://doi.org/10.1021/ie000613k