Optimum Coagulation Conditions for Ceramic Microfiltration Membrane Process

세라믹 정밀여과막 공정을 위한 최적 응집조건

  • Received : 2012.04.16
  • Accepted : 2012.04.27
  • Published : 2012.04.30

Abstract

This study was carried out to find the optimum coagulation conditions for ceramic microfiltration process of Y water treatment plant. When pH of raw water from Y Dam was adjusted to 7, the efficiency of coagulation was the best and the optimun dosage of coagulant was 3 mg/L(as $Al_2O_3$) for turbidity of raw water less then 10 NTU in Jar test. In mini module test, the decay rate of specific flux was the lowest when PAC (poly Aluminum Chloride) was used among coagulants and pH was adjusted to 7. The decay rate of specific flux for raw water turbidity of 10~30 NTU was greatly decreased with increase of dosage of coagulant (PAC) while the rate was not significantly decreased for turbidity more than 50 NTU. In conclusion, the optimum dosage of PAC (11% as $Al_2O_3$) was 30 and 50 mg/L for raw water turbidity of less than 10 NTU and more than 50 NTU, respectively. The dosage of PAC should be increased linearly 30 to 50 mg/L depending on raw water turbidity of 10 to 50 NTU.

본 연구는 Y 정수장의 세라믹 정밀여과막 공정을 위한 최적의 응집 조건을 도출하고자 수행되었다. 쟈테스트 결과 Y댐 원수의 pH를 7로 조정 시 응집효율이 가장 우수하였으며, 원수 탁도가 10 NTU 이하인 평상시 탁도 조건하에서 최적 응집제 주입량은 3 mg/L (as $Al_2O_3$)인 것으로 나타났다. 최적 응집제를 선정하기 위하여 응집제 종류(PAC, PACS (II), PAHCS)별로 미니모듈 실험장치를 이용하여 평가한 결과 PAC를 주입하고 원수 pH를 7로 조정한 경우 비여과유속 감소율이 가장 낮은 것으로 나타났다. 원수 탁도를 10~150 NTU로 변화시키며 미니모듈에서 비여과유속 감소율을 평가한 결과 원수탁도 10~30 NTU 조건에서는 응집제 주입량 증가에 따라 비여과유속 감소율이 크게 감소하였으나 원수탁도가 50 NTU 이상에서는 응집제 주입량을 증가시켜도 비여과유속 감소율에 큰 차이가 없는 것으로 나타났다. 따라서 Y 정수장을 위해서 는 원수탁도 10 NTU 이하에서는 PAC (11% as $Al_2O_3$) 30 mg/L, 10~50 NTU에서는 30~50 mg/L, 50 NTU 이상에서는 50 mg/L이 적절하다.

Keywords

References

  1. V. Lahoussine-Turcard, M. R. Wiesner, J. Y. Botterro, and J. Mallevialle, "Coagulation-flocculation with aluminium salts: influence on the filtration efficacy with microporous membranes", Wat. Res., 26(5), 695 (1992). https://doi.org/10.1016/0043-1354(92)90247-2
  2. S. J. Juddi and P. HillisS, "Optimisation of combinded coagulation and microfiltration for water treatment", Wat. Res. 35(12), 2895 (2001). https://doi.org/10.1016/S0043-1354(00)00586-8
  3. Y. Magara, S, Kunikane, and M. Itoh, "Advanced membrane technology for application to water treatment", Wat. Sci. Technol., 37(10), 91 (1998). https://doi.org/10.1016/S0273-1223(98)00307-2
  4. M. H. Cho and C. H. Lee, "Influence of flocculation conditions on filtration performance in the coagulation-MF process", Joint Fall Conference of Korean Society on Water & Wastewater and Korean Society on Water Environment, D-1, 241 (2001).
  5. J. H. Kweon, Y. H. Choi, S. H. Lee, and K. H. Ahn, "Coagulation characteristics of a natural water and the effects on microfiltration", Joint Fall Conference of Korean Society on Water & Wastewater and Korean Society on Water Environment, A-8, 41 (2004).
  6. Y. T. Ahn, J. H. Lee, H. S. Shin, K. E. Roh, and C. Y. Lee, "Effects of coagulation on pollutant removal and membrane fouling in drinking water treatment", Joint Fall Conference of Korean Society on Water & Wastewater and Korean Society on Water Environment, E-5, 576 (2006).
  7. H. C. Lee and J. Y. Park, "Advanced water treatment of high turbidity source by hybrid process of multi-channels ceramic microfiltration and activated carbon adsorption", Membrane Journal, 18(4), 325 (2008).
  8. J. D. Lee, S. H. Lee, M. H. Jo, P. K. Park, H. Lee, and J. W. Kwak, "Effect of coagulation conditions on membrane filtration characteristics in coagulation- microfiltration process for water treatment", Environ. Sci. Technol., 34, 3780 (2000). https://doi.org/10.1021/es9907461
  9. J. S. Kim, S. Akeprathumchai, and S. R. Wickramasinghe, "Flocculation to enhance microfiltration", J. Membr. Sci., 182, 161 (2001). https://doi.org/10.1016/S0376-7388(00)00564-0
  10. 米川 均, "淨水處理用モノリス形セラミック膜システムのろ過特性に關する硏究", 博士學位論文, 北海道大學大學院 工學硏究科, 北海道 (2005).