DOI QR코드

DOI QR Code

Analyzing Coordination of Theory and Evidence Presented in Pre-service Elementary Teachers' Science Writing for Inquiry Activities

예비 초등교사의 과학 탐구 글쓰기 활동에서 나타난 이론과 증거의 조정 과정 분석

  • Received : 2011.04.07
  • Accepted : 2012.02.20
  • Published : 2012.04.30

Abstract

This study aims to explore patterns and characteristics of coordination between evidence and theories which were found in pre-service elementary teachers' writing for their science inquiry. Five science inquiry activities and a total of 115 writings of the participant teacher at the elementary teacher preparation university in Korea were collected and analyzed for this study. Based on the writing analyses there were found four types of coordination between the evidence and theory. We proposed four types as: Type 1-Consistency of evidence and theory; Type 2-Consistence of evidence and theory including more extension or elaboration of theory; Type 3-Inconsistence of evidence and theory Type 4-Inconsistence of evidence and theory followed by coordination of them. Firstly the findings indicated that the most to least frequent types were Type 1, Type 3, Type 2, and Type 4. The most frequent type was Type 1. It is interpreted that theory in the inquiry questions were frequently figured out by participants and they selected supporting evidence out of data found. There were rarely found relations between activity topics and frequencies of coordination types except in activity 1. The findings in this study will connect to the point of how students collaborate their previously owned knowledge with experiment planning, data analysis and interpretation and making of their own scientific claims.

본 연구는 예비초등교사들이 과학탐구를 수행하고 이에 대한 과학글쓰기를 분석하여 증거와 이론의 조정의 유형과 특성을 탐색하기 위한 연구이다. 본 연구에서 4개의 과학탐구활동에서 총 115개의 예비초등교사들의 글쓰기가 수집 및 분석되었다. 글쓰기 분석을 바탕으로 4개의 이론과 증거의 조정 유형을 발견할 수 있었다. 본 연구는 다음과 같이 유형을 제안한다. 유형1은 증거와 이론의 일치, 유형2는 증거와 이론의 일치 및 이론의 확장과 정교화, 유형3은 증거와 이론의 불일치, 마지막으로 유형4는 증거와 이론의 불일치 및 조정으로 보았다. 본 연구결과 우선 빈도수를 고려할 때 가장 많은 것에서 적은 것의 순으로 보면 유형1, 유형3, 유형2, 유형4의 순이다. 가장 빈도수가 높은 것으로 유형1이 나왔는데 이는 탐구질문에 내재된 이론이 참여자에 의해 쉽게 파악되었고 이를 지지하는 증거를 발견된 자료 중에서 골라냈다는 것으로 해석된다. 탐구주제와 조정유형의 빈도수 사이에 관련성이 별로 없었으나 예외적으로 활동1은 관련성을 보여주었다. 본연구의 이러한 결과는 학생들이 자신이 이미 가지고 있는 지식을 실험계획, 자료분석 및 해석 그리고 과학주장을 만들어내는 과정에서 잘 융합하고 있다는 점과 연관성이 있다고 보여진다.

Keywords

References

  1. 박종원, 장병기, 윤혜경, 박승재 (1993). 중학생들의 빛과 그림자에 대한 증거 평가. 한국과학교육학회지, 13(2), 135-145.
  2. Dunbar, K. (1993). Concept discovery in a scientific domain. Cognitive Science, 17, 397-434. https://doi.org/10.1207/s15516709cog1703_3
  3. Faust, D. (1984). The limits of scientific reasoning. Minneapolis: University of Minnesota Press.
  4. Giere, R. N. (1991). Understanding scientific reasoning (3rd ed.). Forth Worth, TX: Holt.
  5. Hashweh, M. Z. (1996). Effects of science teachers' epistemological beliefs in teaching. Journal of Research in Science Teaching, 33(1), 47-63. https://doi.org/10.1002/(SICI)1098-2736(199601)33:1<47::AID-TEA3>3.0.CO;2-P
  6. Havdala R. & Ashkenazi, G. (2007). Coordination of theory and evidence: Effect of epistemological theories on students' laboratory practice. Journal of Research in Science Teaching, 44(8), 1134-1159. https://doi.org/10.1002/tea.20215
  7. Kuhn, D. (2004). What is scientific thinking and how does it develop? In U. Goswami(Ed.), Blackwell handbook of childhood cognitive development (pp. 371-393). Malden, MA: Blackwell.
  8. Kuhn, D., Amsel, E., & O'Loughlin, M. (1988). The development of scientific thinking skills. San Diego, CA: Academic Press.
  9. Lawson, A.E. (1992). What do tests of formal reasoning actually measure? Journal of Research in Science Teaching, 29, 965-983. https://doi.org/10.1002/tea.3660290906
  10. National Research Council (2000). Inquiry and the National Science Education Standards. National Academy Press: Washington D.C.
  11. Norman, O. (1997). Investigating the nature of formal reasoning in chemistry: Testing Lawson's multiple hypothesis theory. Journal of Research in Science Teaching, 34, 1067-1081. https://doi.org/10.1002/(SICI)1098-2736(199712)34:10<1067::AID-TEA6>3.0.CO;2-P
  12. Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89, 634-656. https://doi.org/10.1002/sce.20065
  13. Shadish, W. & Neimeyer, R. (1989). Contributions of psychology to an integrated science studies: the shape of things to come. In S. Fuller, M. De Mey, T. Shinn & S. Woolgar (Eds.), the Cognitive turn (p. 17). Kluwer Academy Publishers.
  14. Siegel, H. (1989). The rationality of science, critical thinking and science education. Synthese, 80(1), 9-42. https://doi.org/10.1007/BF00869946

Cited by

  1. Exploring Korean Pre-service Elementary Teachers' Scientific Inquiry Using the Science Writing Heuristic Template vol.33, pp.5, 2012, https://doi.org/10.5467/JKESS.2012.33.5.459
  2. Issues and Effects in Developing Inquiry-Based Argumentation Task for Science Teachers: A Case of Charles' Law Experiment vol.34, pp.2, 2014, https://doi.org/10.14697/jkase.2014.34.2.0079
  3. Grade and Cognition of Pre-Service Education vol.34, pp.3, 2014, https://doi.org/10.14697/jkase.2014.34.3.0197
  4. The Process of Group Writing and Processes Factor vol.35, pp.4, 2015, https://doi.org/10.14697/jkase.2015.35.4.0585
  5. 중등과학교사임용시험 문항에 나타난 과학교육학 이론의 분석 vol.33, pp.4, 2012, https://doi.org/10.14697/jkase.2013.33.4.794
  6. A Study of Preliminary Biology Teachers’Scientific Inquiry Skills and LogicalThinking Ability through the Activity of Science Writing vol.44, pp.1, 2012, https://doi.org/10.15717/bioedu.2016.44.1.114
  7. 화학 탐구 맥락에서 중등 과학 교사가 제시한 주장과 증거 분석 vol.61, pp.6, 2017, https://doi.org/10.5012/jkcs.2017.61.6.359