DOI QR코드

DOI QR Code

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model

Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석

  • Kwon, Hyun-Han (Department of Civil Engineering, Chonbuk National University) ;
  • Kim, Jang-Gyeong (Department of Civil Engineering, Chonbuk National University) ;
  • Lee, Jong-Seok (College of Engineering, Chonbuk National University) ;
  • Na, Bong-Kil (Korea Water Resources Corporation, Bohyunsandam Construction Office)
  • 권현한 (전북대학교 토목공학과) ;
  • 김장경 (전북대학교 토목공학과) ;
  • 이종석 (전북대학교 공과대학) ;
  • 나봉길 (한국수자원공사 보현산댐건설단 공사팀)
  • Received : 2012.03.08
  • Accepted : 2012.03.22
  • Published : 2012.05.31

Abstract

The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

본 연구에서는 국내외에서 범용되고 있는 단일강우사상 모형인 미육군공병단의 HEC-1 모형을 이용하여 대청댐 유역의 실측 강우-유출 사상을 중심으로 강우-유출 모의를 수행하였으며, 매개변수 검정에는 실제 대청댐의 시간당 유입량을 기준으로 검정을 실시하였다. HEC-1 모형에는 매개변수를 자동으로 최적화시키는 프로그램이 내장되어 있으나 본 연구의 대상유역과 같이 다수의 소유역이 있는 경우, 매개변수 추정시 매개변수 중 일부는 수렴되지 못하고 발산하는 문제가 있었으며, 첨두유량의 추정능력 역시 저하되는 문제를 보였다. 따라서 이러한 HEC-1 모형의 매개변수의 불확실성을 고려하기 위한 방안으로 Bayesian 모형을 HEC-1모형에 연동시켜 활용하였으며, 기존 HEC-1 강우-유출 모형에 적용할 수 있는 매개변수 최적화 및 불확실성 정량화를 위해 HEC-1 강우-유출 모형 매개변수는 SCS 1개, Clark 단위도 2개를 Bayesian MCMC 기법을 적용하여 매개변수간 조건부확률로 모의발생을 한 후, Bayesian 모형으로부터 각 매개변수의 사후분포(posterior distribution)를 추정하여 사후분포의 추정이 매개변수의 불확실성 정량화를 수행하였다. 본 연구를 통해 제안된 BHEC-1 모형을 대상으로 대청댐 유역에 실측 강우-유출사상에 대해서 모형의 적합성을 평가한 결과, 7개 유역의 21개의 매개변수가 해의 발산 없이 안정된 매개변수 추정이 가능하였다. 한편, Bayesian 모형을 근간으로 하기 때문에 최종결과로서 매개변수들의 사후분포(posterior)의 추정이 가능하여 향후 홍수빈도곡선 유도, 댐 위험도분석과 기후변화 문제와 같은 다양한 수문학적 문제의 연구에 적용 가능할 것으로 전망된다.

Keywords

References

  1. 국토해양부 (2008). 금강유역종합치수계획 보고서.
  2. 권현한, 박대형, 문영일 (2004a). "단일사상 강우-유출 모형의 불확실성 분석을 통한 홍수빈도곡선 유도( I )." 대한토목학회논문집, 대한토목학회, 제24권, 제3B호, pp. 229-239.
  3. 권현한, 박대형, 문영일(2004b). "단일사상 강우-유출 모형의 불확실성 분석을 통한 홍수빈도곡선유도(II)". 대한토목학회논문집, 대한토목학회, 제24권, 제3B호, pp. 241- 246.
  4. 권현한, 문영일 (2007). "기상정보 및 태풍특성을 고려한 계절 강수량의 확률론적 모형 구축." 대한토목학회논문집, 대한토목학회, 제27권, 제1B호, pp. 45-52.
  5. 권현한, 문영일, 김병식, 윤석영 (2008). "Bayesian Markov Chain Monte Carlo 기법을 통한 NWS-PC 강우-유출모형 매개변수의 최적화 및 불확실성 분석." 대한토목학회논문집, 대한토목학회, 제28권, 제4B호, pp. 383- 392
  6. 신현석, 윤용남(1998). "MCS와 LHS 법에 의한 연 저수지 퇴사량 산정에 있어서의 불확실성 및 민감도 분석." 대한토목학회논문집, 대한토목학회, 제18권, 제II-2호, pp. 141-152.
  7. Bates, B.C., and Townley, L.R. (1988). "Nonlinear, discrete flood event models. 3. Analysis of prediction uncertainty." Journal of Hydrology, Vol. 99, pp. 91- 101. https://doi.org/10.1016/0022-1694(88)90080-7
  8. Beven, K.J., and Binley, A. (1992). "The future of distributed models: model calibration and uncertainty prediction." Hydrological Processes, Vol. 6, pp. 279- 298. https://doi.org/10.1002/hyp.3360060305
  9. Binley, A.M., Beven, K.J., Calver, A., and Watts, L.G. (1991). "Changing responses in hydrology: assessing the uncertainty in physically based model predictions." Water Resources Research, Vol. 27, No. 6, pp. 1253- 1261. https://doi.org/10.1029/91WR00130
  10. Garen, D.C., and Burges, S.J. (1981). "Approximate error bounds for simulated hydrographs." Journal of the Hydraulics Division, ASCE, Vol. 107, pp. 1519-1534.
  11. Gelman, A., Chew, G.L., and Shnaidman, M. (2004). "Bayesian Analysis of Serial Dilution Assays." Biometrics, Vol. 60, No. 2, pp. 407-417. https://doi.org/10.1111/j.0006-341X.2004.00185.x
  12. Hasting, G.W. (1970). "Macromolecular chemistry and medicine." Angewandte Chemie. International Edition in English, Vol. 9, No. 5, pp. 332-344. https://doi.org/10.1002/anie.197003321
  13. Hydrologic Engineering Center (1990). "HEC-1 Flood Hydrograph Package, User's Manual." U.S. Army Corps of Engineers, Davis, California.
  14. Kwon, H.-H., Sivakumar, B., Moon, Y.-I., and Kim, B.-S. (2011). "Assessment of change in design flood frequency under climate change using a multivariate downscaling model and a precipitation-runoff model." Stochastic environmental research and risk assessment : research journal, Vol. 25, No. 4, pp. 567-581. https://doi.org/10.1007/s00477-010-0422-z
  15. Kwon, H.-H., Moon, Y.-I., and Khalil, A.F. (2007). "Nonparametric Monte Carlo Simulation For Flood Frequency Curve Derivation: An Application to A Korean Watershed." Journal of the American Water Resources Association, Vol. 43, No. 5, pp. 1316-1328. https://doi.org/10.1111/j.1752-1688.2007.00115.x
  16. Lei, J., and Schlling, W. (1993). Propagation of model uncertainty. Proceedings Sixth International Conference on Urban Storm Drainage, Niagara Falls, Canada. Seapoint Publishing, Victoria, BC, Canada, pp. 465-470.
  17. Melching, C.S. (1992a). "An improved first-order reliability approach for assessing uncertainties in hydrologic modeling." Journal of Hydrology, Vol. 132, pp. 157-177. https://doi.org/10.1016/0022-1694(92)90177-W
  18. Melching, C.S. (1992b). A comparison of methods for estimating variance of water resources model predictions. In: Kuo, J.T., Lin, G.F. (Eds.). Stochastic Hydraulics '92, Proceedings Sixth International Association for Hydraulic Research Symposium on Stochastic Hydraulics, Taipei, Taiwan. Water Resources Publications, Littleton, CO, pp. 663-670.
  19. Melching, C.S. (1995). Computer models of watershed hydrology. In: Vijay Singh, P. (Ed.). Reliability Estimation. Water Resources Publications, Littleton, CO, pp. 69-118.
  20. Metropolis, N., and Ulam, S. (1953). "A Property of Randomness of an Arithmetical Function. The American mathematical monthly." The Official Journal of the Mathematical Association of America, Vol. 60, No. 4, pp. 252-253.
  21. Nash, J.E., and Sutcliffe, J.V. (1970). "River Flow Forecasting Conceptual Models Part I-A Discussion of Principles." J. Hydrol., Vol. 10, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  22. Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, pp. 184-194.
  23. Yu, P.S., Yang, T.C., and Chen, S.J. (2001). "Comparison of uncertainty analysis methods for a distributed rainfall-runoff model." Journal of Hydrology, Vol. 244, pp. 43-59. https://doi.org/10.1016/S0022-1694(01)00328-6

Cited by

  1. Analysis of Intensity-Duration-Quantity (IDQ) Curve for Designing Flood Retention Basin vol.47, pp.1, 2014, https://doi.org/10.3741/JKWRA.2014.47.1.83
  2. Flood risk estimation with scenario-based, coupled river-overland hydrodynamic modeling vol.49, pp.09, 2016, https://doi.org/10.3741/JKWRA.2016.49.9.773
  3. A development of downscaling scheme for sub-daily extreme precipitation using conditional copula model vol.49, pp.10, 2016, https://doi.org/10.3741/JKWRA.2016.49.10.863
  4. Derivation of Flood Frequency Curve with Uncertainty of Rainfall and Rainfall-Runoff Model vol.46, pp.1, 2013, https://doi.org/10.3741/JKWRA.2013.46.1.59
  5. Improvement of Hydrologic Dam Risk Analysis Model Considering Uncertainty of Hydrologic Analysis Process vol.47, pp.10, 2014, https://doi.org/10.3741/JKWRA.2014.47.10.853
  6. Projection of Climate Change with Uncertainties: 1. GCM and RCP Uncertainties vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.317
  7. A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.793
  8. A development of rating-curve using Bayesian Multi-Segmented model vol.49, pp.3, 2016, https://doi.org/10.3741/JKWRA.2016.49.3.253
  9. A Development of Hydrologic Dam Risk Analysis Model Using Bayesian Network(BN) vol.48, pp.10, 2015, https://doi.org/10.3741/JKWRA.2015.48.10.781