DOI QR코드

DOI QR Code

Synthesis and Photoluminescence Properties of CaWO4:Eu3+ Phosphors

CaWO4:Eu3+ 형광체의 합성과 발광 특성

  • Cho, Shin-Ho (Department of Materials Science and Engineering, Silla University) ;
  • Cho, Seon-Woog (Department of Materials Science and Engineering, Silla University)
  • 조신호 (신라대학교 공과대학 신소재공학과) ;
  • 조선욱 (신라대학교 공과대학 신소재공학과)
  • Received : 2012.03.22
  • Accepted : 2012.04.17
  • Published : 2012.05.27

Abstract

Red phosphors $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ were synthesized with different concentrations of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors was found to be a tetragonal system. X-ray diffraction (XRD) results showed the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and the size of crystalline particles exhibited an overall decreasing tendency according to the concentration of $Eu^{3+}$ ions. The excitation spectra of all the phosphors were composed of a broad band centered at 275 nm in the range of 230-310 nm due to $O^{2-}{\rightarrow}W^{6+}$ and a narrow band having a peak at 307 nm caused by $O^{2-}{\rightarrow}Eu^{3+}$. Also, the excitation spectrum presents several strong lines in the range of 305-420 nm, which are assigned to the 4f-4f transitions of the $Eu^{3+}$ ion. In the case of the emission spectrum, all the phosphor powders, irrespective of $Eu^{3+}$ ion concentration, indicated an orange emission peak at 594 nm and a strong red emission spectrum centered at 615 nm, with two weak lines at 648 and 700 nm. The highest red emission intensity occurred at x = 0.10 mol of Eu3+ ion concentration with an asymmetry ratio of 12.5. Especially, the presence of $Eu^{3+}$ in the $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ shows very effective use of excitation energy in the range of 305-420 nm, and finally yields a strong emission of red light.

Keywords

References

  1. Y. Tian, B. Chen, H. Yu, R. Hua, X. Li, J. Sun, L. Cheng, H. Zhong, J. Zhang, Y. Zheng, T. Yu and L. Huang, J. Colloid Interface Sci., 360, 586 (2011). https://doi.org/10.1016/j.jcis.2011.04.094
  2. H. He, J. Huang, L. Cao and X. Ao, Adv. Nat. Appl. Sci., 3, 204 (2009).
  3. A. Zalga, R. Sazinas, E. Garskaite, A. Kareiva, T. Bareika, G. Tamulaitis, R. Juskenas and R. Ramanauskas, CHEMIJA, 20, 169 (2009).
  4. Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang and X. Huang, J. Alloy. Comp., 390, 226 (2005). https://doi.org/10.1016/j.jallcom.2004.07.063
  5. Q. Xiao, Q. Zhou and M. Li, J. Lumin., 130, 1092 (2010). https://doi.org/10.1016/j.jlumin.2010.02.001
  6. F. M. Emen, R. Altinkaya, S. Sonmez and N. Kulcu, Acta Phys. Pol., 121, 249 (2012). https://doi.org/10.12693/APhysPolA.121.249
  7. M. V. Nazarov, D. Y. Jeon, J. H. Kang, E. -J. Popovici, L. -E. Muresan, M. V. Zamoryanskaya and B. S. Tsukerblat, Solid State Comm., 131, 307 (2004). https://doi.org/10.1016/j.ssc.2004.05.025
  8. Y. Su, L. Li and G. Li, Chem. Mater., 20, 6060 (2008). https://doi.org/10.1021/cm8014435
  9. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, 3rd ed., p.170, Prentice Hall, New Jersey, U.S.A. (2001).
  10. C. A. Kodaira, H. F. Brito, O. L. Malta and O. A. Serra, J. Lumin., 101, 11 (2003). https://doi.org/10.1016/S0022-2313(02)00384-8
  11. S. Cho and S. -W. Cho, Kor. J. Mater. Res., 22, 145 (2012) (in Korean). https://doi.org/10.3740/MRSK.2012.22.3.145
  12. J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang and X. He, Opt. Mater., 32, 857 (2010). https://doi.org/10.1016/j.optmat.2009.12.011
  13. J. Zhang, Y. Wang, Z. Zhang, Z. Wang and B. Liu, Mater. Lett., 62, 202 (2008). https://doi.org/10.1016/j.matlet.2007.04.101

Cited by

  1. Phosphors vol.22, pp.9, 2012, https://doi.org/10.3740/MRSK.2012.22.9.489
  2. vol.34, pp.9, 2013, https://doi.org/10.5012/bkcs.2013.34.9.2769
  3. Phosphors vol.24, pp.7, 2014, https://doi.org/10.3740/MRSK.2014.24.7.339