DOI QR코드

DOI QR Code

Hydrothermal Synthesis and Structural Characterization of x mol% Calcia-Stabilized ZrO2 Nanopowders

x mol% 칼시아-안정화 지르코니아 나노분말의 수열합성 및 구조적 특성평가

  • Ryu, Je-Hyeok (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Moon, Jung-In (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Park, Yeon-Kyung (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Nguyen, Tuan Dung (Department of Materials Science and Engineering, Graduate School of PaiChai University) ;
  • Song, Jeong-Hwan (Department of Information and Electronic Materials Engineering, PaiChai University) ;
  • Kim, Taik-Nam (Department of Information and Electronic Materials Engineering, PaiChai University)
  • 류제혁 (배재대학교 대학원 재료공학과) ;
  • 문정인 (배재대학교 대학원 재료공학과) ;
  • 박연경 (배재대학교 대학원 재료공학과) ;
  • ;
  • 송정환 (배재대학교 정보전자소재공학과) ;
  • 김택남 (배재대학교 정보전자소재공학과)
  • Received : 2012.03.05
  • Accepted : 2012.04.27
  • Published : 2012.05.27

Abstract

Pure zirconia and $x$ mol% calcia partially stabilized zirconia ($x$ = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and $x$ mol% calcia doped zirconia was prepared by adding $NH_4OH$ to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as $160^{\circ}C$, pure $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above $160^{\circ}C$. To observe the phase transition, the 3 mol% CaO-$ZrO_2$ and 8 mol% CaO-$ZrO_2$ nanopowders were heat treated from 600 to $1000^{\circ}C$ for 2h. The 3 mol% CaO-$ZrO_2$ heat treated at above $1000^{\circ}C$ was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-$ZrO_2$ nanopowders via the hydrothermal method.

Keywords

References

  1. T. Schmidt, M. Mennig and H. Schmidt, J. Am. Ceram. Soc., 90(5), 1401 (2007). https://doi.org/10.1111/j.1551-2916.2007.01567.x
  2. R. Jossen, R. Mueller, S. E. Pratsinis, M. Watson and M. K. Akhtar, Nanotechnology, 16, S609 (2005). https://doi.org/10.1088/0957-4484/16/7/039
  3. A. R. Pebler, J. Mater. Res., 5, 680 (1990). https://doi.org/10.1557/JMR.1990.0680
  4. J. Kaspar and P. Fornasiero, J. Solid State Chem., 171, 19 (2003). https://doi.org/10.1016/S0022-4596(02)00141-X
  5. Y. Mizutani, K. Hisada, K. Ukai, H. Sumi, M. Yokoyama, Y. Nakamura and O. Yamamoto, J. Alloy. Comp., 408(12), 518 (2006). https://doi.org/10.1016/j.jallcom.2004.12.177
  6. J. H. Lee, J. Mater. Sci., 38, 4247 (2003). https://doi.org/10.1023/A:1026366628297
  7. A. Mondal and S. Ram, J. Am. Ceram. Soc., 87(12), 2187 (2004). https://doi.org/10.1111/j.1151-2916.2004.tb07489.x
  8. Y. Li, W. Chi, S. Sampath, A. Goland, H. Herman, J. Allen and J. Ilavsky, J. Am. Chem. Soc., 92(2) 491 (2009).
  9. R. C. Garvie, J. Phys. Chem. 69, 1238 (1965). https://doi.org/10.1021/j100888a024
  10. R. C. Garvie, J. Phys. Chem. 82, 218 (1978). https://doi.org/10.1021/j100491a016
  11. W. E. Lee and W. M. Rainforth, Ceramic Microstructures: Property Control by Processing, p. 317., Chapman & Hall, London (1994).
  12. R. E. Juarez, D. G. Lamas, G. E. Lascalea, N. E. Walsoe de Reca, Defect Diffus. Forum, 177-178, 1 (1999).
  13. S. Zhou, G. Garnweitner, M. Niederberger and M. Antonietti, Langmuir, 23(18), 9178 (2007). https://doi.org/10.1021/la700837u
  14. G. Pang, S. Chen, Y. Zhu, O. Palchik, Y. Koltypin, A. Zaban and A. Gedanken, J. Phys. Chem. B, 105, 4647 (2001). https://doi.org/10.1021/jp010334q
  15. Y. Hirata, M. Nakamura, M. Miyamoto, Y. Tanaka and X. H. Wang, J. Am. Ceram. Soc., 89(6), 1883 (2006). https://doi.org/10.1111/j.1551-2916.2006.01046.x
  16. I -M. Hung, D. -T. Hung, K. -Z. Fung and M. -H. Hon, J. Eur. Ceram. Soc., 26, 2627 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.069
  17. H. Kumazawa, T. Inoue and E. Sada., Chem. Eng. J. Biochem. Eng. J., 55, 93 (1991).
  18. R. E. Juarez, D. G. Lamas, G. E. Lascalea and N. E. Walsoe de Reca, J. Eur. Ceram. Soc., 20, 133 (2000). https://doi.org/10.1016/S0955-2219(99)00146-6
  19. W. Pyda, K. Haberko and M. M. Bulko, J. Am. Ceram. Soc., 74(10), 2622 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06810.x
  20. M. Dechamps, B. Djuricic and S. Pickering, J. Am. Ceram. Soc.. 78(11), 2873 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb09058.x
  21. K. Matsui, H. Suzuki, M. Ohgai and H. Arashi, J. Am. Ceram. Soc., 78(1), 146 (1995). https://doi.org/10.1111/j.1151-2916.1995.tb08374.x
  22. J. Wang, L. S. Ee, S. C. Ng, C. H. Chew and L. M. Gan, Mater. Lett., 30, 119 (1997). https://doi.org/10.1016/S0167-577X(96)00181-4
  23. J. H. Song and J. H. Lee, Kor. J. Mater. Res., 19(8), 412 (2009). https://doi.org/10.3740/MRSK.2009.19.8.412
  24. H. S. Kil, S. H. Hwag, J. H. Ryu, D. Y. Lim and S. B. Cho., J. Ceram. Soc. Jpn., 120(2), 52 (2012). https://doi.org/10.2109/jcersj2.120.52
  25. Y. Gogotsi and V. Domnich, High-Pressure Surface Science and Engineering, p. 476-520, CRC Press, UK (2003).
  26. C. Wulfman, M. Sadoun and M. L. de la Chapelle, IRBM, 31, 257 (2010). https://doi.org/10.1016/j.irbm.2010.10.004

Cited by

  1. Enhancement of Surface Hardness of Zirconia Ceramics by Hydroxyapatite Powder Bed Sintering vol.24, pp.12, 2014, https://doi.org/10.3740/MRSK.2014.24.12.677