DOI QR코드

DOI QR Code

Effects of Bi(Mg1/2Sn1/2)O3 Modification on the Dielectric and Piezoelectric Properties of Bi1/2(Na0.8K0.2)1/2TiO3 Ceramics

Bi1/2(Na0.8K0.2)1/2TiO3 세라믹스의 유전 및 압전 특성에 대한 Bi(Mg1/2Sn1/2)O3 변성 효과

  • Pham, Ky Nam (School of Materials Science and Engineering, University of Ulsan) ;
  • Dinh, Thi Hinh (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Hyun-Young (School of Materials Science and Engineering, University of Ulsan) ;
  • Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 팜키남 (울산대학교 첨단소재공학부) ;
  • 딘치힌 (울산대학교 첨단소재공학부) ;
  • 이현영 (울산대학교 첨단소재공학부) ;
  • 공영민 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2012.04.15
  • Accepted : 2012.05.24
  • Published : 2012.05.31

Abstract

The effect of $Bi(Mg_{1/2}Sn_{1/2})O_3$ (BMS) modification on the crystal structure, ferroelectric and piezoelectric properties of $Bi_{1/2}(Na_{0.8}K_{0.2})_{1/2}TiO_3$ (BNKT) ceramics has been investigated. The BMS-substitution induced a transition from a ferroelectric (FE) tetragonal to a nonpolar pseudocubic phase, leading to degradations in the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electric-field-induced strain was significantly enhanced by the BMS substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 633 pm/V under an applied electric field of 6 kV/mm when the BMS content reached 6 mol%. The abnormal enhancement in strain was attributed to the field-induced transition of the pseudocubic symmetry to other asymmetrical structure, which was not clarified in this work.

Keywords

References

  1. T. Takenaka and H. Nagata, "Current Status and Prospects of Lead-Free Piezoelectric Ceramics," J. Eur. Ceram. Soc., 25 2693-700 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  2. T. R. Shrout and S. T. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?" J. Electroceram., 19 111-24 (2007).
  3. J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, and T. Granzow, "Perspective on the Development of Lead-free Piezoceramics," J. Am. Ceram. Soc., 92 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  4. P. K. Panda, "Review: Environmental Friendly Lead-Free Piezoelectric Materials," J. Mater. Sci., 44 5049-62 (2009). https://doi.org/10.1007/s10853-009-3643-0
  5. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, "New Ferroelectrics of Complex Composition," Sov. Phys. Solid State, 2 2651-54 (1961).
  6. T. Takenaka, K. Maruyama, and K. Sakata, "$(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl. Phys., 30 2236-39 (1991). https://doi.org/10.1143/JJAP.30.2236
  7. A. Sasaki, T. Chiba, Y. Mamiya, and E. Otsuki, "Dielectric and Piezoelectric Properties of $(Bi_{0.5}Na_{0.5})TiO_3-(Bi_{0.5}K_{0.5})TiO_3$ Systems," Jpn. J. Appl. Phys., 38 5564-67 (1999). https://doi.org/10.1143/JJAP.38.5564
  8. Z. Yang, B. Liu, L. Wei, and Y. Hou, "Structure and Electrical Properties of (1-x)$Bi_{0.5}Na_{0.5}TiO_3-xBi_{0.5}K_{0.5}TiO_3$ Ceramics Near Morphotropic Phase Boundary," Mater. Res. Bull., 43 81-89 (2008). https://doi.org/10.1016/j.materresbull.2007.02.016
  9. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel, "Giant Strain in Lead-Free Piezoceramics $Bi_{0.5}Na_{0.5}$ $TiO_3-BaTiO_3-0.5Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91 112906-13 (2007). https://doi.org/10.1063/1.2783200
  10. J. E. Daniels, W. Jo, J. Rodel, and J. L Jones, "Electric-Field-Induced Phase Transformation at a Lead-Free Morphotropic Phase Boundary: Case Study in a 93%($Bi_{0.5}Na_{0.5})TiO_3-7%BaTiO_3$ Piezoelectric Ceramic," Appl. Phys. Lett., 95 032904-906 (2009). https://doi.org/10.1063/1.3182679
  11. G. Picht, J. Topfer, and E. Hennig, "Structural Properties of $(Bi_{0.5}Na_{0.5})_{1-x}Ba_xTiO_3$ Lead-Free Piezoelectric Ceramics," J. Eur. Ceram. Soc., 30 3445-53 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.042
  12. M. Hinterstein, M. Knapp, M. Holzel, W. Jo, A. Cervellino, H. Ehrengerg, and H. Fuess, "Field-Induced Phase Transition in $Bi_{1/2}Na_{1/2}TiO_3$-Based Lead-Free Piezoelectric Ceramics," J. Appl. Crystall., 34 1314-21 (2010).
  13. J. Kling, X. Tan, W. Jo, H. J. Kleebe, H. Fuess, and J. Rodel, "In Situ Transmission Electron Microscopy of Electric Field-Triggered Reversible Domain Formation in Bi-Based Lead-Free Piezoceramics," J. Am. Ceram. Soc., 93 2452-55 (2010). https://doi.org/10.1111/j.1551-2916.2010.03778.x
  14. K. T. P. Seifert, W. Jo, and J. Rodel, "Temperature-Insensitive Large Strain of $(Bi_{1/2}Na_{1/2})TiO_3-(Bi_{1/2}K_{1/2})TiO_3-(K_{1/2}Na_{1/2})NbO_3$ Lead-Free Piezoceramics," J. Am. Ceram. Soc., 93 1392- 96 (2010).
  15. V. D. N. Tran, H. S. Han, C. H. Yoon, J. S. Lee, W. Jo, and J. Rodel, "Thermally Stable Field-Induced Strain of Lead-Free Electrostrictive Bi-Based Perovskite Ceramics," Mater. Lett., 65 2607-09 (2011). https://doi.org/10.1016/j.matlet.2011.05.059
  16. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, "Large Electric-Field-Induced Strain in Zr-Modified Lead-Free $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}TiO_3$ Piezoelectric Ceramics," Sens. Actuators A, 158 84-89 (2010). https://doi.org/10.1016/j.sna.2009.12.027
  17. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah, and I. W. Kim, "The Effects of Hafnium Substitution on Dielectric and Piezoelectric Properties of Lead-Free $Bi_{0.5}(Na_{0.78}K_{0.22})_{0.5}(Ti_{1-x}Hf_x)O_3$ Ceramics," Jpn. J. Appl. Phys., 49 041054 (2010).
  18. N. B. Do, H. B. Lee, C. H. Yoon, J. K. Kang, J. S. Lee, and I. W. Kim, "Effect of Ta-Substitution on the Ferroelectric and Piezoelectric Properties of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Ceramics," Trans. Electr.l Electron. Mater., 12 64-7 (2011). https://doi.org/10.4313/TEEM.2011.12.2.64
  19. K. N. Pham, H. B. Lee, H. S. Han, J. K. Kang, and J. S. Lee, A. Ullah, C. W. Ahn, and I. W. Kim, "Dielectric, Ferroelectric, and Piezoelectric Properties of Nb-Substituted $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-Free Ceramics," J. Kor. Phys. Soc., 60 207-11 (2012). https://doi.org/10.3938/jkps.60.207
  20. A. Ullah, S. Y. Lee, H. J. Lee, I. W. Kim, C. W. Ahn, H. I. Hwang, A. Hussain, and J. S. Lee, "Phase Transition, Microstructures and Electromechanical Properties of $BiAlO_3$-Modified $Bi_{0.5}(Na,K)_{0.5}TiO_3$ Lead-Free Piezoelectric Ceramics," J. Kor. Phys. Soc., 57 1102-105 (2010). https://doi.org/10.3938/jkps.57.1102
  21. C. A. Randall, A. Kelnberger, G. Y. Yang, R. E. Eitel, and T. R. Shrout, "High Strain Piezoelectric Multilayer Actuators-Material Science and Engineering Challenge," J. Electroceram., 14 177-91 (2005). https://doi.org/10.1007/s10832-005-0956-5
  22. Y. Zhang, A. L. Ding, P. S. Qiu, X. Y. He, X. S. Zheng, H. R. Zeng, and Q. R. Yin, "Effect of La Content on Characterization of PLZT Ceramics," Mater. Sci. Eng., B99 360-2 (2003).

Cited by

  1. -Based Piezoelectric Materials vol.2014, pp.1687-8442, 2014, https://doi.org/10.1155/2014/365391
  2. The Study on the Phase Transition and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3-LaMnO3 Lead-free Piezoelectric Ceramics vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.237
  3. Giant strain in lead-free relaxor/ferroelectric piezocomposite ceramics vol.68, pp.12, 2016, https://doi.org/10.3938/jkps.68.1439
  4. La 기반의 ABO3 구조를 갖는 첨가물에 따른 Bi0.5(Na0.78K0.22)0.5TiO3의 압전 및 전기적인 특성 향상 연구 vol.27, pp.11, 2012, https://doi.org/10.4313/jkem.2014.27.11.707
  5. A-site Vacancy가 0.97Bi0.5+x(Na0.78K0.22)0.5-3xTiO3-0.03LaFeO3 무연압전 세라믹스의 압전특성에 미치는 영향 vol.51, pp.6, 2012, https://doi.org/10.4191/kcers.2014.51.6.527