Preparation and Characterization of Cellulose Acetate/Poly Ethylene Glycol Blend Having High Melt Processibility

우수한 용융특성을 갖는 Cellulose acetate/Poly ethylene glycol 조성물의 제조 및 특성 해석

  • Lee, Hae Sung (Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Lee, Sung Jun (Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Jung, Sang Won (Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kim, Hyun-Chul (Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Kim, Eunjoo (Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology) ;
  • Go, Young Jun (Business Planning Team, Korea Optical Industry Support Center) ;
  • Lee, Se Guen (Division of Nano-Bio Technology, Daegu Gyeongbuk Institute of Science and Technology)
  • 이해성 (대구경북과학기술연구원 나노바이오연구부) ;
  • 이성준 (대구경북과학기술연구원 나노바이오연구부) ;
  • 정상원 (대구경북과학기술연구원 나노바이오연구부) ;
  • 김현철 (대구경북과학기술연구원 나노바이오연구부) ;
  • 김은주 (대구경북과학기술연구원 나노바이오연구부) ;
  • 고영준 ((재)한국안경산업지원센터 기획팀) ;
  • 이세근 (대구경북과학기술연구원 나노바이오연구부)
  • Received : 2012.01.26
  • Accepted : 2012.03.17
  • Published : 2012.03.31

Abstract

Purpose: Cellulose acetate (CA) was blended with polyethyleneglycol (PEG) having different molecular weight at various mixing conditions to enhance melt-processibility of CA, which might prevent the harmful effect resulted from the introduction of phthalic plasticizer. Methods: To establish optimal plasticizing conditions, CA/PEG blends were examined under various plasticizing conditions: PEG concentration, molecular weight of PEG, and plasticzing temperature. Mechanical properties of the CA/PEG blends, as well as migration and exudation of the PEG, were performed in order to evaluate the efficiency of plasticization. Results: Compared to industrial CA resin plasticized by diethyl phthalate, CA/PEG blends exhibited similar thermal plasticization. It was established that the optimum condition was to blend 30~40 phr PEG with molecular weight 400 at $175{\sim}180^{\circ}C$. CA/PEG blend showed superior glassness, PEG stability, and mechanical properties. Conclusions: CA/PEG blends would be a eco-friendly glasses frame to substitute traditional CA glasses frame prepared phthalate plasticizers.

목적: 본 연구는 cellulose acetate(CA)의 용융특성을 증가시키기 위해 polyethyleneglycol(PEG)를 도입함으로써 기존에 사용되는 환경유해성 가소제의 사용 없이 열가공성이 향상 된 CA/PEG 조성물을 제조하는데 목적이 있다. 방법: CA의 최적 가소화 조건을 확립하기 위해 PEG 분자량, 농도, 및 혼입온도를 제어하여 CA/PEG 조성물의 가소화 성능을 확인하였으며, CA와 PEG간의 혼화성을 확인하기 위해 제조된 조성물의 열분석 및 표면분석을 실시하였다. 또한 기존 상용 CA 레진과의 가소제 용출특성, 기계적 물성 및 광학적 특성들의 비교분석을 통해 가소제에 의한 물성차이를 검토하였다. 결과: PEG의 도입을 통해 기존 상용 CA 레진과 유사한 가소화 성능을 확인하였으며, 최적의 가소화 조건은 PEG분자량 400, PEG 함량 30~40 phr, 가소화온도 $175{\sim}180^{\circ}C$에서 우수한 용융특성을 나타냄을 확인 하였다. 또한 기존의 CA 안경테 소재와 비교 시 우수한 광택특성 및 안정성을 확인 하였으며, 동등수준 이상의 기계적 물성을 보임을 확인 하였다. 결론: CA/PEG 조성물은 환경 친화적 안경테 소재로써 기존 프탈레이트계 가소제를 사용한 CA 안경테 소재를 대체할 수 있을 것으로 판단된다.

Keywords

References

  1. KTC 무역위원회 보고서, "안경테 산업경쟁력 조사" (2003), pp. 12-63, http://www.ktc.go.kr(2003.10.31.).
  2. Rustemeyer P., "Cellulose acetate: properties and applications", Wiley. VCH, Heidelburg, Germany, pp. 255-267(2003).
  3. Young C. R., Koleng J. J., and Mcginity J. W., "Production of spherical pellets by a hot-melt extrusion and spheronization process", Inter. J. Pharma., 242(1-2):87-92(2002). https://doi.org/10.1016/S0378-5173(02)00152-7
  4. Sprockel O. L., Sen M., Shivanand P., and Prapaitrakul W., "A melt-extrusion process for manufacturing matrix drug delivery systems", Inter. J. Pharma., 155(2):191-199(1997). https://doi.org/10.1016/S0378-5173(97)00165-8
  5. Liu J., Zhang F., and McGinity J. W., "Properties of lipophilic matrix tablets containing phenylpropanolamine hydrochloride prepared by hot-melt extrusion", Inter. J. Pharma. biopharma, 52(2):181-190(2001). https://doi.org/10.1016/S0939-6411(01)00162-X
  6. Frohoff-Hlsmann M. A., Lippold B. C., Mcginity J. W., "Aqueous ethyl cellulose dispersion containing plasticizers of different water solubility and hydroxypropyl methyl-cellulose as coating material for diffusion pellets II: properties of sprayed films", Inter. J. Pharma. biopharma., 48(1):67-75(1999). https://doi.org/10.1016/S0939-6411(99)00023-5
  7. Bchard S. R., Levy L., and Clas S. D., "Thermal, mechanical and functional properties of cellulose acetate phthalate (CAP) coatings obtained from neutralized aqueous solutions", Inter. J. Pharma., 114(2):205-213(1995). https://doi.org/10.1016/0378-5173(94)00239-2
  8. Lee S. H., Lee S. Y., Lim H. K., Nam J. D., Kye H. S., and Lee Y. K., "Preparation and Properties of Plasticized Cellulose Diacetate Using Triacetine/Epoxidized Soybean Oil", Polymer, 30(3):202-206(2006).
  9. Biswas A., Saha B. C., Lawton J. W., Shogren R. L., and Willett J. L., "Process for obtaining cellulose acetate from agricultural by-products", Car. Polymer, 64(1):134-137(2006). https://doi.org/10.1016/j.carbpol.2005.11.002