DOI QR코드

DOI QR Code

Adsorption Equilibrium, Kinetics and Thermodynamics Studies of Malachite Green Using Zeolite

제올라이트를 이용한 말라카이트 그린의 흡착평형, 동력학 및 열역학 연구

  • Lee, Jong-Jib (School of Chemical Engineering, Kongju National University)
  • 이종집 (공주대학교 화학공학부)
  • Received : 2012.02.07
  • Accepted : 2012.02.16
  • Published : 2012.03.30

Abstract

The paper includes utlization of zeolite as potential adsorbent to remove a hazardous malachite green from waste water. The adsorption studies were carried out at 298, 308 and 318 K and effects of temperature, contact time, initial concentration on the adsorption were measured. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were also confirmed. The equilibrium process was described well by Freundlich isotherm model, showing a selective adsorption by irregular energy of zeolite surface. From determined isotherm constants, zeolite could be employed as effective treatment for removal of malachite green. From kinetic experiments, the adsorption process followed the pseudo second order model, and the adsorption rate constant ($k_2$) decreased with increasing initial concentration of malachite green. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy calculated from Arrhenius equation indicated that the adsorption of malachite green on the zeolite was physical process. The negative free energy change (${\Delta}G^{\circ}$ =-6.47~-9.07 kJ/mol) and the positive enthalpy change (${\Delta}H^{\circ}$ = +32.414 kJ/mol) indicated the spontaneous and endothermic nature of the adsorption in the temperature range 298~318 K.

폐수로 부터 유독한 말라카이트 그린 성분을 제거하는데 있어서 제올라이트의 활용가능성을 살펴보았다. 흡착실험은 298, 308 및 318 K에서 수행하였으며, 흡착에 대한 온도, 접촉시간과 초기농도의 영향을 조사하였다. 흡착자료를 기초로 Langmuir와 Freundlich 흡착등온식에 대한 적합성을 평가하였다. 흡착공정은 Freundlich 흡착등온식이 잘 맞았으므로 제올라이트 표면의 불균일한 에너지에 의해 선택적인 흡착이 이루어짐을 알았다. 계산된 흡착등온선의 상수 값으로부터 제올라이트에 의해서 말라카이트 그린의 효과적인 처리가 가능하다는 것을 알 수 있었다. 동력학적 실험으로부터, 흡착공정은 유사이차반응속도식에 잘 맞으며, 속도상수($k_2$) 값은 말라카이트 그린의 초기농도가 증가할수록 감소하였다. 활성화에너지, 엔탈피, 엔트로피 및 자유에너지변화와 같은 열역학 파라미터들은 흡착공정의 특성을 평가하기 위하여 조사하였다. 활성화에너지의 계산값은 제올라이트에 대한 말라카이트 그린의 흡착이 물리적 공정임을 나타냈다. 자유에너지변화값(${\Delta}G^{\circ}$ = -6.47~-9.07 kJ/mol)과 엔탈피변화값(${\Delta}H^{\circ}$ = +32.414 kJ/mol)은 흡착공정이 298~318 K 범위에서 자발적이고 흡열과정이라는 것을 나타냈다.

Keywords

References

  1. Zhou, L., Gao, C., and Xu, W., "Magetic Dendritic Materials for Highly Effluent Adsorption of Dyes and Drugs," ACS Appl. Mater. Interfaces, 2, 1483-1491 (2010). https://doi.org/10.1021/am100114f
  2. Blackburn, R., "Natural Polysaccarides and their Interaction with Dye Molecules: Applications in Effluent Tretment," Environ. Sci. Technol., 38, 4905-4909 (2004). https://doi.org/10.1021/es049972n
  3. Shi, B., Li, G., Wang, C. Feng, I., and Tang, H., "Removal of Direct Dyes by Coagulation: The Performance of Preformed Polymeric Aluminum Species," J. Hazard. Mater., 143, 567- 574 (2007). https://doi.org/10.1016/j.jhazmat.2006.09.076
  4. Lee, J., Choi, S. Thiruvenkatacharib, R., Chim, W., and Moon, H., "Submerged Microfiltration Membrane Coupled with Alum Coagulation/powdered Activated Carbon Adsorption for Complete Decolorization of Reactive Dyes," Water Res., 40, 435- 444 (2006). https://doi.org/10.1016/j.watres.2005.11.034
  5. Mahanta, D., Madras, G., Rdhakrishnan, S., and Patil, S., "Adsorption and Desortption Kinetics of Anionic Dyes on Doped Polyaniline," J. Phys. Chem. B, 113, 2293-2299 (2009). https://doi.org/10.1021/jp809796e
  6. Mahanta, D., Madras, G., Rdhakrishnan, S., and Patil, S., "Adsorption and Sulfonated Dyes by Polyaniline Emeraldine Salt and its Kinetics," J. Phys. Chem. B, 112, 10153-10157 (2008). https://doi.org/10.1021/jp803903x
  7. Chen, W., Lu, W., Yao, Y., and Xu, M., "Highly Efficient Decomposition of Orgarnic Dyes by Aqueous-fiber Phase Transfer and in Situ Catalytic Oxidation Using Fiber-supported Cobalt Phthalocyanine," Environ. Sci. Technol., 41, 6240-6245 (2007). https://doi.org/10.1021/es070002k
  8. Wong, Y., Szeto, Y. Cheung, W., and McKay, G., "Equilibrum Studies for Acid Dye Adsorption onto Chitosan," Langmuir, 19, 7888-7894 (2003). https://doi.org/10.1021/la030064y
  9. Fernandez, J., Kiwi, J., Lizama, C., Freer, J., Baeza, J., and Mansilia, H., "Fractorial Experimental Design of Orange II Photocatalytic Discoloration," J. Photochem. Photobiol. A, 151, 213-219 (2002). https://doi.org/10.1016/S1010-6030(02)00153-3
  10. Tan, I. A. W., Ahmad, A. L., and Hameed, B. H., "Adsorption of Basic Dye on High-surface-area Activated Carbon Prepared from Coconut Husk," J. Hazard. Mater., 154, 337-346 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.031
  11. Samiey, B., and Toosi, A., "Kinetics and Thermodynamics Adsorption of Congo Red on Cellulose," Central Eur. J. Chem., 8, 906-912 (2010). https://doi.org/10.2478/s11532-010-0055-6
  12. Gupta, V. K., Mittal, A., Krisnan, L., and Grajbe, V., "Adsorption Kinetics and Column Operations for the Removal and Recovery of Malachite Green from Wastewater Using Bottom Ash," Sep. Purif. Technol., 40, 87-96 (2004). https://doi.org/10.1016/j.seppur.2004.01.008
  13. Mittal, A., "Adsorption Kinetics of Removal of a Toxic Dye, Malachite Green, from Wastewater by Using Hen Feathers', J. Hazard. Mater. B, 133, 196-202 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.017
  14. Zhang, J., Li, Y., Zhang, C., and Jing, Y., "Adsorption of Malachite Green from Aqueous Solution onto Carbon, Prepared from Arundo Donax Root," J. Hazard. Mater., 150, 774-782 (2008). https://doi.org/10.1016/j.jhazmat.2007.05.036
  15. Kumar, K., Sivanesan, S., and Ramamurthi, V., "Adsorption of Malachite Green onto Pithophora Sp., a Fresh Water Algaeequilibrium and Kinetic Modelling," Proc. Biochem., 40, 2865- 2872 (2005). https://doi.org/10.1016/j.procbio.2005.01.007
  16. Ahmad, R., and Kumar, R., "Adsorption Studies of Hazardous Malachite Green onto Treated Ginger Waste," J. Environ. Manag., 91, 1032-1038 (2010). https://doi.org/10.1016/j.jenvman.2009.12.016
  17. Chowdhury, S., Mishra, R., and Saha, P., "Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green onto Chemically Modified Rice Husk," Desalination, 265, 159-168 (2011). https://doi.org/10.1016/j.desal.2010.07.047
  18. Sekhar, C., Kalidhasan, S., Rajesh, V., and Rajesh, N., "Biopolymer Adsorbent for the Removal of Malachite Green from Aqueous Solution," Chemosphere, 77, 842-847 (2009). https://doi.org/10.1016/j.chemosphere.2009.07.068
  19. Baek, M. H., Ijagbemi, C. O., O, S. J., and Kim, D. S., "Removal of Malachite Green from Aqueous Solution Using Degreased Coffee Bean," J. Hazard. Mater., 176, 820-828 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.110
  20. Bekci, Z., ozveri, C., Seki, Y., and Yurdakoc, K, "Sorption of Malachite Green on Chitosan Bead," J. Hazard. Mater., 154, 254-261 (2008). https://doi.org/10.1016/j.jhazmat.2007.10.021
  21. Nollet, H., Roels, M., Lutgen, P., Van der Meeren, P., and Verstraete, W., "Removal of PCBs from Wastewater Using Fly Ash," Chemosphere, 53(6), 655-665 (2003). https://doi.org/10.1016/S0045-6535(03)00517-4
  22. Ijagbemi, C., Baek, M., and Kim, D., "Monomorilonite Surface Properties and Sorption Characteristics for Heavy Metal Removal from Aqueous Solutions," J. Hazard. Mater., 166, 538-546 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.085
  23. Jaycock, M. J., and Parfitt, G. D., "Chemistry of Interfaces," Ellis Horwood Ltd., Chichester, 1981.
  24. Dorgan, M., Alkan, M., Demirbas, O., Ozdemir, Y., and Ozmetin, C., "Adsorption Kinetics of Maxilon Blue GRL onto Sepiolite from Aqueous Solutions," Chem. Eng. J., 124, 89-101 (2006). https://doi.org/10.1016/j.cej.2006.08.016
  25. Lee, J. J., "Study on Adsorption Kinetics of Amaranth Dye on Activated Carbon," Clean Technol., 17(2), 97-102 (2011).

Cited by

  1. A study on the adsorption characteristic and safety assessment of railway subsoil material vol.17, pp.2, 2015, https://doi.org/10.17663/JWR.2015.17.2.146
  2. Adsorption Characteristics of Malachite Green on Zeolite vol.18, pp.3, 2012, https://doi.org/10.7464/ksct.2012.18.3.312
  3. A Study for the Removal of Phosphorous Using Coated Exfoliated Vermiculite vol.15, pp.12, 2014, https://doi.org/10.14481/jkges.2014.15.12.5
  4. Selective removal of color substances by carbon-based adsorbents in livestock wastewater effluents vol.42, pp.6, 2012, https://doi.org/10.1007/s10653-020-00547-w