DOI QR코드

DOI QR Code

The Promotion Effects on Partial Oxidation of Methane for Hydrogen Production over Co/Al2O3 and Ni/Al2O3 Catalysts

수소생산을 위한 메탄 부분산화용 코발트와 니켈 촉매에서의 조촉매 첨가 효과

  • Hong, Ju-Hwan (Department of Chemical Engineering, Changwon National University) ;
  • Ha, Ho-Jung (Department of Chemical Engineering, Changwon National University) ;
  • Han, Jong-Dae (Department of Chemical Engineering, Changwon National University)
  • 홍주환 (창원대학교 공과대학 화공시스템공학과) ;
  • 하호정 (창원대학교 공과대학 화공시스템공학과) ;
  • 한종대 (창원대학교 공과대학 화공시스템공학과)
  • Received : 2012.01.20
  • Accepted : 2012.01.30
  • Published : 2012.03.30

Abstract

The Co and Ni catalysts supported on $Al_2O_3$ for partial oxidation of methane producing hydrogen were synthesized using impregnation to incipient wetness. And the promotion effects of metals such as Mg, Ce, La and Sr in partial oxidation of methane over these $Co/Al_2O_3$ and $Ni/Al_2O_3$ were investigated. Reaction activity of these catalysts for the partial oxidation of methane was investigated in the temperature range of 450~$650^{\circ}C$ at 1 atm and $CH_2/O_2$ = 2.0. The catalysts were characterized by BET, XRD and SEM/EDX. The results indicated that the catalytic performance of these catalysts was improved with the addition of 0.2 wt% metal promoter. The Mg promoted $Co/Al_2O_3$ catalyst showed the highest $CH_4$ conversion and hydrogen selectivity at higher temperature than $500^{\circ}C$. The Ce and Sr promoted Ni catalysts superior to Co-based catalysts in the low temperature range. The addition of metal promoter to $Co/Al_2O_3$ and $Ni/Al_2O_3$ catalysts increased the surface area.

수소생산을 위한 메탄의 부분산화용 촉매로 알루미나에 담지된 코발트와 니켈 촉매를 함침법으로 제조하였다. 이들 코발트와 니켈 촉매에 조촉매 성분 Mg, Ce, La와 Sr을 첨가하여 초촉매 효과를 조사하였다. 메탄의 부분산화반응을 위한 촉매의 활성은 상압, $CH_4/O_2$ = 2.0에서 450~$650^{\circ}C$의 온도영역으로 조사하였다. 촉매의 특성은 BET, XRD와 SEM/EDX를 이용하여 조사하였다. 0.2 wt%의 조촉매 성분의 첨가로 촉매성능의 상승효과를 얻을 수 있었다. $500^{\circ}C$ 이상의 온도에서는 $Co/Al_2O_3$에 Mg을 첨가한 촉매가 가장 우수한 메탄 전환율과 수소 선택성을 나타내었다. 낮은 온도 영역에서는 $Ni/Al_2O_3$에 Ce와 Sr을 첨가한 촉매가 Co계 촉매보다 우수한 반응특성을 나타내었다. $Co/Al_2O_3$$Ni/Al_2O_3$에 조촉매를 첨가한 경우 촉매의 표면적이 증가하는 것으로 나타났다.

Keywords

References

  1. Enger, B. C., Lodeng, R., and Holmen, A., "A Review of Catalytic Partial Oxidation of Methane to Synthesis Gas with Emphasis on Reaction Mechanisms over Transition Metal Catalysts," Appl. Catal. A: Gen., 346(1-2), 1-27 (2008). https://doi.org/10.1016/j.apcata.2008.05.018
  2. Demirci, U. B., and Demirci, I., "Methane," in Handbook of Sustainable Energy, Lee, W. H., and Cho, V. G., Eds., Nova Science Publishers, Inc., New York, 323-358 (2011).
  3. Kim, J. K., Kim, J. H., Lee, J. G., and Han, C., "Methane Conversion to Hydrogen Using Ni/$Al_{2}O_{3}$ Catalyst," Korean Ind. Eng. Chem., 19(5), 466-470 (2008).
  4. Kim, S. B., Kim, Y. K., Lim, Y. S., Kim, M. S., and Hahm, H. S., "Partial Oxidation of Methane to Synthesis Gas over Ni Catalysts," Korean J. Chem. Eng., 41(1), 1023-1025 (2003).
  5. Lin, S. Y., Production of Hydrogen from Hydrocarbons, in Hydrogen Fuel: Production, Transport, and Storage, Ram B. Gupta, Ed., CRC Press, Boca Raton, 2009, pp. 33-101.
  6. Satterfield, C. N., Heterogeneous Catalysis in Industrial Practice, McGraw-Hill, New York, 1991, pp. 419-470.
  7. Pena, M. A., Gomez, J. P., and Fierro, J. L. G., "New Catalytic Routes for Syngas and Hydrogen Production," Appl. Catal. A: Gen., 144(1-2), 7-57 (1996). https://doi.org/10.1016/0926-860X(96)00108-1
  8. Bradford, M. C. J., and Vannice, M. A., "Catalytic Reforming of Methane with Carbon Dioxide over Nickel Catalysts : 1. Catalyst Characterization and Activity," Appl. Catal. A: Gen., 142(1), 73-96 (1996). https://doi.org/10.1016/0926-860X(96)00065-8
  9. Wang, S., and Lu, G. Q., "Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal Supported Catalysts: State of the Art," Energy & Fuels, 10(4), 896-904 (1996). https://doi.org/10.1021/ef950227t
  10. Aparicio, P. F., Ramos, I. R., Anderson, J. A., and Ruiz, A. G., "Mechanistic Aspects of the Dry Reforming of Methane over Ruthenium Catalysts," Appl. Catal. A: Gen., 202(2), 183-196 (2000). https://doi.org/10.1016/S0926-860X(00)00525-1
  11. Luo, J. Z., Yu, Z. L., Ng, C. F., and Au, C. T., "$CO_{2}$/$CH_{4}$ Reforming over Ni-$La_{2}O_{3}$/5A: An Investigation on Carbon Deposition and Reaction Steps," J. Catal., 194(2), 198-210 (2000). https://doi.org/10.1006/jcat.2000.2941
  12. Onstot, W. J., Minet, R. G., and Tsotsis, T. T., "Design Aspects of Membrane Reactors for Dry Reforming of Methane for the Production of Hydrogen," Ind. Eng. Chem. Res., 40(1), 242- 251 (2001). https://doi.org/10.1021/ie0003685
  13. Zhang, K., Kogelschatz, U., and Eliasson, B., "Conversion of Greenhouse Gasses to Synthesis Gas and Higher Hydrocarbons," Energy & Fuels, 15(2), 395-402 (2001). https://doi.org/10.1021/ef000161o
  14. Gao, X. X., Huang, C. J., Zhang, N. W., Li, J. H., and Wan, H. L., "Partial Oxidation of Methane to Synthesis Gas over Co/ Ca/$Al_{2}O_{3}$ Catalysts." Catal. Today, 131(1-4), 211-218 (2008). https://doi.org/10.1016/j.cattod.2007.10.051
  15. Craciun, R., Shereck, B., and Gorte, R. J., "Kinetic Studies of Methane Steam Reforming on Ceria-supported Pd," Catal. Lett., 51(3-4), 149-153 (1998). https://doi.org/10.1023/A:1019022009310
  16. Lee, S. S., Hong, J. H., Ha, H. J., Kim, B. K., and Han, J. D., "Partial Oxidation of Methane for Hydrogen Production over Co and Ni Catalyst," Korean Chem. Eng. Res., 48(6), 776-783 (2010).
  17. Zeng, S., Wang, L., Gong, M., and Chen, Y., "Catalytic Properties of Ni/Ceria-Yttria Electrode Materials for Partial Oxidation of methane," J. Natural Gas. Chem., 19(5), 509-514 (2010). https://doi.org/10.1016/S1003-9953(09)60098-0
  18. Yu, C., Weng, W., Shu Q., Meng X., Zhang, B. Chen, X., and Zhou, X., "Additive Effects of Alkaline-Earth Metals and Nickel on the Performance of Co/$\gamma$-$Al_{2}O_{3}$ in Methane Catalytic Partial Oxidation," J. Natural Gas. Chem., 20(2), 135-139 (2011). https://doi.org/10.1016/S1003-9953(10)60175-2
  19. Di, M., Dajiang, M., Xuan, L., Maochu, G., and Yaoqiang, C., "Partial Oxidation of Methane to Syngas over Monolithic Ni/$\gamma$-$Al_{2}O_{3}$ Catalyst-Effects of Rare Earths and Other Basic Promoters," J. Rare. Earths, 24(4), 451-455 (2006). https://doi.org/10.1016/S1002-0721(06)60142-7
  20. Seo, J. G., Youn, M. H., and Song, I. K., "Hydrogen Production by Stream Reforming of Liquefied Natural Gas (LNG) over Nickel Catalyst Supported on Surfactant-templated Mesoporous Alumina," Clean Technol., 15(1), 47-53 (2009).
  21. Seo, J. G., Youn, M. H., and Song, I. K., "Hydrogen Production by Stream Reforming of Liquefied Natural Gas (LNG) over Nickel Catalyst Supported on Surfactant-templated Mesoporous Alumina," Clean Technol., 15(1), 47-53 (2009).
  22. Yaquan, W., Xuebin, H., Bingbing, L., Wenju, W., and Dalin, W., "Yttria Promoted Metallic Nickel Catalysts for the Partial Oxidation of Methane to Synthesis Gas," J. Natural Gas. Chem., 17(4), 344-350 (2008). https://doi.org/10.1016/S1003-9953(09)60006-2

Cited by

  1. The De-CH4Characteristics of NGOC for CH4Reduction of a CNG Bus vol.20, pp.4, 2016, https://doi.org/10.9726/kspse.2016.20.4.069
  2. CNG 버스용 NGOC의 CH4 저감 성능 향상을 위한 연구 vol.18, pp.5, 2012, https://doi.org/10.5762/kais.2017.18.5.708
  3. CH4와 NOx 저감 성능에 관한 CeO2 첨가의 영향 vol.18, pp.9, 2012, https://doi.org/10.5762/kais.2017.18.9.473
  4. Simultaneous Reduction of CH4 and NOx of NGOC/LNT Catalysts for CNG buses vol.19, pp.6, 2012, https://doi.org/10.5762/kais.2018.19.6.167
  5. 플라즈마-축열버너 부분산화 개질장치 vol.32, pp.1, 2012, https://doi.org/10.7316/khnes.2021.32.1.68
  6. Development of a Combined Plasma‐Matrix Reformer for Solid Oxide Fuel Cell Application vol.45, pp.1, 2012, https://doi.org/10.1002/ceat.202100358