DOI QR코드

DOI QR Code

Mathematical analysis of colonial formation of embryonic stem cells in microfluidic system

  • Min, Seul Ki (Department of Biological Engineering, Inha University) ;
  • Lee, Byung Man (Department of Biological Engineering, Inha University) ;
  • Hwang, Jin Ha (Department of Biological Engineering, Inha University) ;
  • Ha, Sung Ho (Departmet of Chemical Engineering & Nano-Bio Technology, Hannam University) ;
  • Shin, Hwa Sung (Department of Biological Engineering, Inha University)
  • 투고 : 2011.05.27
  • 심사 : 2011.07.15
  • 발행 : 2012.03.01

초록

A fluidic environment affects mechanochemical characteristics of embryonic stem cells (ESCs). Perfusion is recognized as an attractive culture mode of ESCs since the steady fluidic state can enhance ESCs' controllability, supporting a unique cell culture condition. Cellular membrane motility presents important information about cellular dynamics such as adhesion, spreading, and migration. Thus, an investigation of the perfusion-induced membrane motility is significant to understand the mechanochemical behavior of ESCs in the steady culture state. In this research, we suggest $L_{fr}$, the ratio of circumferential membrane unattached to other cells' to the cell's circumference, as a new parameter to characterize cells' shape and motility. $L_{fr}$ of embryonic stem cells has positive correlations with cellular area ($A_r$) and free peripheral length ($L_f$) but a negative correlation with roundness ($R_n$). We also propose a mathematical model representing ESCs' membrane motilities and demonstrate their colonical behavior.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. J. S. Odorico, D. S. Kaufman and J.A. Thomson, Stem Cells, 19, 193 (2001). https://doi.org/10.1634/stemcells.19-3-193
  2. T. O'Brien and F. P. Barry, Mayo, Clin. Proc., 84, 859 (2009). https://doi.org/10.4065/84.10.859
  3. W. J. Fong, H. L. Tan, A. Choo and S. K. W. Oh, Bioproc. Biosyst. Eng., 27, 1615 (2005).
  4. D. E. Ingber, Biol. Bull., 194, 323 (1998).
  5. H. Tsuboi, J. Ando, R. Korenaga, Y. Takada and A. Kamiya, Biochem. Biophys. Res. Commun., 206, 988 (1995).
  6. J. N. Topper, J. Cai, D. Falb and M. A. Gimbrone, Proc. Natl. Acad. Sci. USA, 93, 10417 (1996). https://doi.org/10.1073/pnas.93.19.10417
  7. H. J. Hsieh, N. Q. Li and J. A. Frangos, Am. J. Physiol., 260, H642 (1991).
  8. I. Rivilis, M. Milkiewicz, P. Boyd, J. Goldstein, M.D. Brown, S. Egginton, F.M. Hansen, O. Hudlicka and T. L. Haas, Am. J. Physiol. Heart Circ. Physiol., 283, H1430 (2002). https://doi.org/10.1152/ajpheart.00082.2002
  9. S. Nonaka, H. Shiratori, Y. Saijoh and H. Hamada, Nature, 418, 96 (2002). https://doi.org/10.1038/nature00849
  10. Y. Kimiko, S. Takaaki, W. Tetsuro, M. Kohei, K.Y. Jun, O. Syotaro, O. Norihiko, M. Akiko, K. Akira and A. Joji, Am. J. Physiol. Heart Circ. Physiol., 288, H1915 (2005). https://doi.org/10.1152/ajpheart.00956.2004
  11. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci., 28, 153 (1998). https://doi.org/10.1146/annurev.matsci.28.1.153
  12. A. M. Taylor, S.W. Rhee, C. H. Tu, D. H. Cribbs, C.W. Cotman and N. L. Jeon, Langmuir, 19, 1551 (2003). https://doi.org/10.1021/la026417v
  13. H. S. Shin, H. J. Kim, S. K. Min, S. H. Kim, B. M. Lee and N. L. Jeon, Biotechnol. Lett., 32, 1063 (2010). https://doi.org/10.1007/s10529-010-0280-2
  14. M. H. Kim, M. Kino-oka, M. Kawase, K. Yagi and M. Taya, J. Biosci. Bioeng., 103, 192 (2007). https://doi.org/10.1263/jbb.103.192

피인용 문헌

  1. 미세유체의 효율적인 액적 합류를 위한 정체현상 조절 vol.52, pp.1, 2012, https://doi.org/10.9713/kcer.2014.52.1.106
  2. 미세 채널에서 칼슘이온 물질전달을 이용한 단분산성 알지네이트 하이드로젤 입자의 실시간 젤화 vol.52, pp.5, 2012, https://doi.org/10.9713/kcer.2014.52.5.632
  3. Programmable Static Droplet Array for the Analysis of Cell–Cell Communication in a Confined Microenvironment vol.89, pp.18, 2012, https://doi.org/10.1021/acs.analchem.7b01462
  4. Asymmetrical breakup and size distribution of droplets in a branching microfluidic T-junction vol.36, pp.1, 2012, https://doi.org/10.1007/s11814-018-0165-y