DOI QR코드

DOI QR Code

A Study on Seawater Flow Characteristics inside the Shrouds used in Tidal Current Generation Systems for Various Geometric Angles under Constant Tidal Current Velocity

조류발전 시스템용 쉬라우드의 형상각도별 일정 조류속도장 내 해수유동 특성연구

  • Kim, Jong-Won (Division of Mechanical and Automotive Engineering, Wonkwang University) ;
  • Lee, Sang-Ho (Division of Mechanical and Automotive Engineering, Wonkwang University)
  • 김종원 (원광대학교 기계자동차공학부) ;
  • 이상호 (원광대학교 기계자동차공학부)
  • Received : 2011.09.27
  • Accepted : 2012.03.05
  • Published : 2012.04.30

Abstract

Numerical analyses through Computational Fluid Dynamics have been performed to investigate the seawater flow field characteristics for various shrouds used in horizontal axis tidal current turbine systems. Seawater flow characteristics are largely influenced under constant tidal current velocity by the shroud geometry and there is considerable difference in fluid velocity distributions around the shrouds. Especially the location and magnitude of maximum seawater flow velocity directly affect turbine performance for power generation. For the cylinder-diffuser type shroud system whose cylinder and diffuser parts have the same length accelerated flow region is formed in the overall cylinder part while maximum velocity in the nozzle-diffuser type whose nozzle and diffuser parts have the same length with symmetry, locally appears near the minimum sectional area. In case of cylinder-diffuser type shroud fluid velocity increases rather high compared with current velocity. And fluid velocity at the centerline gradually increases from the entrance, and then decreases rapidly after reaching a peak close to the middle of the cylinder part unlike the nozzle-diffuser while there is not much variation near the rear of the shroud. These results of the seawater flow characteristics with various shroud geometries can be applied to optimal design for the development of efficient tidal current power generation systems.

수평축 조류발전 시스템에 사용되는 쉬라우드의 기하학적 형상각도별 해수의 유동장 특성을 전산유체역학을 통해 분석하였다. 쉬라우드를 포함한 전체 유동장 내 해수의 유속 분포는 일정한 조류속도조건에서 쉬라우드의 형상에 따라 크게 영향을 받으며 특히 발전성능에 직접적으로 영향을 미치는 쉬라우드 내 최대유속의 위치 및 크기는 형상 별로 큰 차이가 있다. 실린더와 디퓨저부분의 길이가 같은 실린더-디퓨저 형태의 쉬라우드에서는 실린더 영역에서 비교적 높은 유속분포가 형성되었으며 노즐과 디퓨저부분의 길이가 같은 대칭구조의 노즐-디퓨저에서는 내경이 최소인 지점에서 국부적으로 나타났다. 실린더-디퓨저 쉬라우드에서 조류속도에 비해 높은 유속이 형성되었으며 중심축상의 유속은 노즐-디퓨저와는 다르게 쉬라우드 입구 근처에서 점차 증가하기 시작하여 실린더부분의 중앙 부근에서 피크값을 지나 디퓨저에서 급격히 감소한 후 다시 일정한 속도로 유지되어 가는 특성을 나타내었다. 이러한 쉬라우드의 형상과 해수유동장 변화특성에 대한 분석결과는 효율적인 조류발전시스템을 위한 쉬라우드의 최적설계에 응용될 수 있을 것으로 기대된다.

Keywords

References

  1. 김종원, 최유현, 이상호 (2011). 조류발전 수평축터빈용 쉬라우드의 형상에 따른 유동특성 연구. 2011년도 한국해양과학기술협의회 공동학술대회(한국해안해양 공학회/한국해양학회/대한조선학회/한국해양공학회/한국해양환경공학회)논문집, 2106-2109.
  2. 조철희, 이강희, 임진영, 채광수 (2009). 유입구 덕트설치에 따른 조류발전 성능 예측. 한국해양환경공학회 2009년도 추계학술대회논문집, 136-145.
  3. 조철희, 이영호 (2008). 국내외 해양에너지 기술 현황. 설비저널, 37(10), 14-37.
  4. 조철희, 임진영, 이강희, 채광수, 노유호, 송승호 (2009). CFD를 이용한 수평축 조류발전 로터성능의 기초연구. 한국신.재생에너지학회논문집, 2009-06-OE-001, 1-6.
  5. 한상훈, 이광수, 염기대, 박우선, 박진순 (2009). 조류발전용 헬리컬 터빈의 특성치 분석. 한국해안.해양공학회논문집, 21(4), 301-307.
  6. Abe, K. and Ohya, Y. (2004). An investigation of flow fields around flanged diffusers using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 92, 315-330. https://doi.org/10.1016/j.jweia.2003.12.003
  7. Bai, L., Spence, R.R.G. and Dudziak, G. (2009). Investigation of influence of array arrangement and spacing on tidal energy converter (TEC) performance using a 27. 3-dimensional CFD model. The 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 654-660.
  8. Beller, C. (2007). Layout design for a venturi to encase a wind turbine, integrated in a high rise. Diploma Thesis, Riso National Laboratory Wind Energy Department DK-4000 Roskilde, 1-11.
  9. Gaden, D.L.F. and Bibeau, E.L. (2010). A numerical investigation into the effect of diffusers on the performance of hydrokinetic turbines using a validated momentum source turbine model. Renewable Energy, 35, 1152-1158. https://doi.org/10.1016/j.renene.2009.11.023
  10. Gaden, D.L.F. (2007). An investigation of river kinetic turbines: performance enhancements, turbine modeling techniques and an assessment of turbulence models. Master's thesis at the University of Manitoba, 9-70.
  11. Kirte, B. (2005). Development in ducted water current turbine. Tidal paper, 25-04-06, 3-6. (http://www.cyberiad.net/tide.htm)
  12. Launder, B.E. and Spalding, D.B. (1974). The numerical computation of turbulent flow. Computational Methods in Applied Mechanical Engineering, 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  13. Raj, U.I. and Nair, A.S. (2009). Development of 3D CFD model of a shrouded wind turbine. 10th National Conference on Technological Trends (NCTT09) 6-7 Nov 2009, 114-118.
  14. Toshiaki, S., Norimasa, S. and Kenji, K. (2004). Development of two-way diffuser for fluid energy conversion system. Renewable Energy, 29, 1757-1771. https://doi.org/10.1016/j.renene.2004.02.007
  15. Toshio, M., Shinya, T. and Seiichi, M. (2006). Characteristics of a highly efficient propeller type small wind turbine with a diffuser. Renewable Energy, 31, 1343-1354. https://doi.org/10.1016/j.renene.2005.07.008
  16. Yuji, O. and Takashi, K. (2010). A Shrouded wind turbine generating high output power with wind-lens technology. Energies, 3, 634-649. https://doi.org/10.3390/en3040634
  17. Yuji, O., Takashi, K., Akira, S., Abe, K. and Masahiro, I. (2008). Development of a shrouded wind turbine with a flanged diffuser. Journal of Wind Engineering and Industrial Aerodynamics, 96, 524-539. https://doi.org/10.1016/j.jweia.2008.01.006

Cited by

  1. Shape Design of the Duct for Tidal Converters Using Both Numerical and Experimental Approaches (pre-2015) vol.9, pp.3, 2016, https://doi.org/10.3390/en9030185
  2. Preliminary Design and Performance Analysis of Ducted Tidal Turbine vol.1, pp.3, 2015, https://doi.org/10.5574/JAROE.2015.1.3.176
  3. Numerical Analysis for the Optimum Design of Shroud Tidal Stream Generation System vol.30, pp.3, 2018, https://doi.org/10.9765/KSCOE.2018.30.3.134