DOI QR코드

DOI QR Code

Model Trajectory Simulation for the Behavior of the Namgang Dam Water in the Kangjin Bay, South Sea, Korea

남해 강진만에서 남강댐 방류수의 거동 특성 및 체류시간 추정

  • Jung, Kwang-Young (Oceanography and Ocean Environmental Sciences, College of Natural Sciences, Chungnam National University) ;
  • Ro, Young-Jae (Oceanography and Ocean Environmental Sciences, College of Natural Sciences, Chungnam National University) ;
  • Kim, Baek-Jin (Oceanography and Ocean Environmental Sciences, College of Natural Sciences, Chungnam National University) ;
  • Park, Kwang-Soon (Climate Change & Coastal Disaster Research Department, Korea Ocean Research and Development Institute)
  • 정광영 (충남대학교 자연과학대학 해양환경과학과) ;
  • 노영재 (충남대학교 자연과학대학 해양환경과학과) ;
  • 김백진 (충남대학교 자연과학대학 해양환경과학과) ;
  • 박광순 (한국해양연구원 기후.연안재해연구부)
  • Received : 2012.01.10
  • Accepted : 2012.02.28
  • Published : 2012.04.30

Abstract

A Lagrangian particle tracking model coupled with the ECOM3D were used to study on the behavior of fresh water released from the Namgang Dam in terms of residence time in Kangjin Bay, South Sea, Korea. Model was calibrated until skill cores for elevation, velocity, temperature and salinity are satisfied over 85%. In the numerical simulation, particles were released in 1 hour time interval from the northern boundary. The different patterns of particle trajectory are identified under the varying dynamics from tidal to density-driven current. The average residence time of total particles are approximately 65.9 hours in the entire Kangjin Bay. The average residence time were increased from 55~65 to 70~80 hours during maximum discharge period. Discharge rate of fresh water and average residence time in the Kangjin Bay is high correlated with correlation coefficient over 0.81.

하계 남강댐 방류수 유입에 의해 강하게 성층화된 남해 강진만에서 3차원 수치모델과 결합된 라그랑지안 입자추적모델링 실험을 통해 방류수의 거동 특성과 만내 평균 체류시간을 추정했다. 조위와 유속장, 수온장, 염분장에 대해 각각 스킬 분석(skill analysis)을 이용해 검증했고, 그 결과 대부분 85%가 넘는 재현율을 보였다. 방류 초기 투하한 입자는 노량수도와 대방수도를 통해 외해로 유출되었으나, 최대 방류시기에 투하한 입자는 남향하는 강한 밀도류에 의해 사천만, 진주만, 강진만으로 유입되었으며, 지형적 요인과 해수유동 특성상 외해로 유출되지 못하여 체류시간이 증가했다. 투하한 입자 전체의 평균 체류시간은 약 65.9 시간(약 2.75일)이며, 초기 방류시 투하한 입자의 평균 체류시간은 약 55~65 시간, 방류 종료시 투하한 입자는 약 60~70 시간이다. 방류량 최대시 투하한 입자는 약 70~80 시간으로 방류량이 증가하면서 체류시간이 약 10~20 시간 증가하는 양의 상관성(R = 0.81)으로 나타났고, 이는 강진만 생태계가 장기간 지속적으로 저염수에 의한 염분 충격을 받은 것으로 볼 수 있다.

Keywords

References

  1. 김연중, 윤종성 (2009). 남강댐방류에 따른 부유쓰레기의 거동 및 담수확산에 관한 연구. 한국해양공학회지, 23(2), 37-46.
  2. 박성은, 홍석진, 이원찬 (2009). Particle Tracking Model을 이용한 평균체류시간의 공간분포 계산. 한국해양공학회지, 23(2), 47-52.
  3. 서승원, 이화영 (2011). 입자추적방법을 이용한 새만금 해역의 수리특성 변화 분석. 한국해안 해양공학회논문집, 23(6), 442-450.
  4. 이충호 (2009). 서해 중부 해역의 동계 해/조류 순환 및 유입자 거동 수치모델링 실험, 석사학위청구논문, 충남대학교.
  5. 정광영 (2007). 남해 강진만에서의 바람과 담수 유입에 의한 하계 해수순환 수치모델링, 석사학위청구논문, 충남대학교.
  6. 정광영, 노영재 (2010). 남해 강진만에서 성층 형성과 성층 파괴 과정, 한국해양학회지 "바다", 15(3), 97-109.
  7. 정연철 (1997). 라그랑지안 입자추적법에 의한 유출유 확산 모델링. 해양안전공학회지, 3(1) 73-83.
  8. 해양수산부 (2006). 피조개 양식어장 인터넷환경 자동감시 및 생산량산정.
  9. Abdelrhman, M.A. (2002). Simplified modeling of flushing and residence times in 42 embayments in New England, USA, with special attention to Greenwich Bay, Rhode Island. Estuarine, Coastal and Shelf Science, 62, 339-351.
  10. Blumberg, A.F.(2002). A primer for ECOMSED, Hydroqual Inc., 188 pp.
  11. Gillibrand, P.A. (2001). Calculating exchange time in a Scottish Fjord using a two-dimensional, laterally-integrated numerical model. Estuarine, Coastal and Shelf Science, 53, 437-449. https://doi.org/10.1006/ecss.1999.0624
  12. Lee, C.H., Ro, Y.J. and Jung, K.Y. (2009). Particle dispersion experiments of the Hebei Spirit oil spill. Proceeding of the spring meeting, 2009 of the Korean Soc. of Oceanography.
  13. Liu, W.C., Chen, W.B. and Kuo, J.T. (2008). Modeling residence time response to fresh water discharge in a mesotidal estuary, Taiwan. J. of Marine Syst, 74(1-2): 295-314. https://doi.org/10.1016/j.jmarsys.2008.01.001
  14. Monsen, N.E., Cloern, J.E. and Jucas, L.V. (2002). A Comment on the use of flushing time, residence time, and age as transport time scales. Limnology and Oceanography, 47(5), 1545-1553. https://doi.org/10.4319/lo.2002.47.5.1545
  15. Oey, L.-Y. and Mellor, G.L. (1993). Subtidal variability of estuarine outflow, plume, and coastal current: a model study. J. of Physical Oceanography, 23, 164-171. https://doi.org/10.1175/1520-0485(1993)023<0164:SVOEOP>2.0.CO;2
  16. Sanford, L.P., Boicourt, W.C. and Rives, S.R. (1992). Model for estimating tidal flushing of small embayents. ASCE J. of Waterway, Port, Coastal and Ocean Engineering, 118, 645-654.
  17. Reid, R.O. and Bodine, B.R. (1968). Numerical model for storm surges in Galveston Bay. ASCE, J. Water Harbors Div., 94, 33-57.
  18. Ro, Y.J. (2005), Numerical modeling of the impact of the river runoff in the formation of the anoxia in the Kangjin Bay, South Sea, Korea. In: American Geophys. Union, Spring Meeting 2005, abstract # OS22A-01.
  19. Ro, Y.J. (2007). Tidal and sub-tidal current characteristics in the Kangjin Bay, South Sea, Korea. Ocean Sci. J., 42(1), 19-30. https://doi.org/10.1007/BF03020907
  20. Ro, Y.J., Jeon, W.S., Jung, K.Y. and Eom, H.M. (2007). Numerical modeling of tide and tidal current in the Kangjin Bay, South Sea, Korea. Ocean Sci. J., 42(3), 153-163. https://doi.org/10.1007/BF03020919
  21. Ro, Y.J. and Jung, K.Y. (2010). Impact of the Dam water discharge on the circulation system in the Kangjin Bay, South Sea, Korea. Ocean Sci. J., 45(1), 17-35.
  22. Ro, Y.J., Jung, K.Y. and Lee, C.H. (2008). "Hebei spiri" oil spill fate and trajectory modeling in the western coast of Korea, Yellow Sea. PICES 176th Annual Meeting Abstract.
  23. Smagorinsky, J. (1963). General circulation experiments with the primitive equation, I. The basic experiment. Monthly Weather Review, 91, 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  24. Smolarkiewicz, P.K. and Clark, T.L. (1986). The Multidimensional Positive Definite Advection Transport algoritym : Further Development and applications, J. Comp. Phys., 67, 396-438. https://doi.org/10.1016/0021-9991(86)90270-6
  25. WAMIS, 2002. Dam water discharge data. http://203.237.1.24/WKD/MN_DTDATA. ASPX?code=2018110 Accessed 1 Sep 2002.
  26. WAMIS, 2004. Dam water discharge data. http://203.237.1.24/WKD/MN_DTDATA.ASPX?code=2018110 Accessed 1 Sep 2004.
  27. Yanagi, T. (1983). Generation mechanism of the tidal residual circulation. J Oceanogr. Soc. Japan, 39(4), 156-166. https://doi.org/10.1007/BF02070259
  28. Zimmerman, J.T.F. (1976). Mixing and flushing of tidal embayments in the Western Ducth Wadden Sea, Part I: Distribution salinity and Calculation of Mixing Time Scales, Netherlands J. of Sea Research. 10, 149-191. https://doi.org/10.1016/0077-7579(76)90013-2

Cited by

  1. Numerical Modeling of Circulation Characteristics in the Kwangyang Estuarine System vol.26, pp.4, 2014, https://doi.org/10.9765/KSCOE.2014.26.4.253
  2. Tidal and Sub-tidal Current Characteristics in the Central part of Chunsu Bay, Yellow Sea, Korea during the Summer Season vol.18, pp.2, 2013, https://doi.org/10.7850/jkso.2013.18.2.53
  3. A Study of Variation Characteristics of the Phytoplankton Community by UPLC Located in the Jinju Bay, Korea vol.36, pp.1, 2018, https://doi.org/10.11626/KJEB.2018.36.1.062