DOI QR코드

DOI QR Code

Effect of Particle Size on Physico-Chemical Properties and Antioxidant Activity of Corn Silk Powder

옥수수수염 분말의 입자크기별 이화학적 특성과 항산화활성

  • 차선미 (농촌진흥청 국립식량과학원) ;
  • 손범영 (농촌진흥청 국립식량과학원) ;
  • 이진석 (농촌진흥청 국립식량과학원) ;
  • 백성범 (농촌진흥청 국립식량과학원) ;
  • 김선림 (농촌진흥청 국립식량과학원) ;
  • 구자환 (농촌진흥청 국립식량과학원) ;
  • 황종진 (농촌진흥청 국립식량과학원) ;
  • 송범헌 (충북대학교 식물자원학과) ;
  • 우선희 (충북대학교 식물자원학과) ;
  • 권영업 (농촌진흥청 국립식량과학원) ;
  • 김정태 (농촌진흥청 국립식량과학원)
  • Received : 2012.01.19
  • Accepted : 2012.03.09
  • Published : 2012.03.30

Abstract

The study was carried out to analyze the relationship between analysis of antioxidant activity and the level of functional components according to particle size of corn silk. Particle size was classified into 5 groups. By particle size distribution and color difference, the total phenol content and DPPH radical scavenging activity were observed. The particle sizes of corn silk were $199.17{\mu}m$, $178.27{\mu}m$, $85.48{\mu}m$, $27.4{\mu}m$ and $20.97{\mu}m$, respectively. The lightness of colored pigments was increased when the particle size was decreased. The contents of free sugar (fructose, glucose, galactose, sucrose, and maltose) of corn silk were analyzed using a HPLC. The total phenol contents by the particle sizes of corn silk were 2.01 mg/g, 2.02 mg/g, 2.06 mg/g, 2.26 mg/g and 2.26 mg/g, respectively. DPPH radical scavenging activities of samples were 21.00%, 21.75%, 22.90%, 24.35% and 23.67%, respectively. Antioxidative activities of Trolox and Fe(II) in corn silk were measured by ferric reducing antioxidant power (FRAP) assay and Trolox equivalent antioxidant capacity (TEAC) assay. TEAC values of samples were $2.36{\mu}mol$ TE / g dw, $2.81{\mu}mol$ TE / g dw, $3.20{\mu}mol$ TE / g dw, $3.36{\mu}mol$ TE / g dw, and $3.44{\mu}mol$ TE / g dw, respectively. FRAP values of samples were $11.67{\mu}mol$ Fe(II) / g dw, $12.80{\mu}mol$ Fe(II) / g dw, $13.43{\mu}mol$ Fe(II) / g dw, $13.85{\mu}mol$ Fe(II) / g dw and $15.95{\mu}mol$ Fe(II) / g dw, respectively. Total phenolic content and antioxidantive activities based on FRAP assay and TEAC assay were increased with decreasing particle size. In addition, DPPH radical scavenging activity was also increased. A significant correlation was also noted between DPPH radical scavenging activities and the content of phenolic compounds.

본 연구에서는 옥수수수염을 일반분쇄기와 저온초미분쇄기를 이용하여 얻은 5단계의 다른 입자 크기의 옥수수수염 분말을 각각의 입자 크기별 이화학적 특성을 검토하고 항산화활성을 평가하여 최적의 입자크기를 찾고 우수한 가공법을 확립하고자 연구를 수행하였다. 본 연구의 결과를 요약하면 다음과 같다. 1. 건조된 옥수수수염을 일반적 분쇄 방법과 저온초미분쇄기를 이용하여 분쇄한 5단계의 입자크기는 각각 $199.17{\mu}m$, $178.27{\mu}m$, $85.48{\mu}m$, $27.04{\mu}m$$20.97{\mu}m$로 가장 큰 입자 크기와 가장 작은 입자 크기와는 약 10배 가량 입자크기의 차이가 있었다. 2. 입자크기별 옥수수수염 분말의 색차는 입자의 크기가 작아질수록 명도와 황색도의 수치가 커졌다. 3. 또한 입자크기별 옥수수 수염 분말을 주사전자현미경(SEM)을 이용하여 300배 확대하여 관찰한 결과 입자의 크기가 작아질수록 확대한 입자의 크기가 작은 것을 확인할 수 있었으며 입자의 모양은 다각형의 모양을 보였다. 4. 입자크기별 옥수수수염 분말의 조지방, 조섬유, 조회분, 조단백질 함량과 유리당 함량을 분석한 결과 조섬유 함량과 조단백질 함량은 입자크기가 작아질수록 그 수치가 줄어들었고, 조지방 함량과 조단백질 함량, 유리당 함량은 입자크기 간에 유의적인 차이를 보이지 않았다. 5. 입자크기별 옥수수수염 분말의 총 페놀 함량과 DPPH 라디컬 소거능 모두 입자크기가 작아질수록 그 수치가 증가하였고 통계적으로도 유의적인 차이를 보였다. 6. 옥수수수염 분말의 입자크기에 따른 ascorbic acid equivalents는 입자크기간의 수치적으로는 차이가 있는 것으로 보였으나 통계적으로는 서로간의 유의적 차이가 없는 것으로 나타났으나 TEAC 실험과 FRAP 실험에서는 입자크기가 작아질수록 그 수치가 증가하였고 통계적으로도 유의적인 차이를 보였다. 7. 옥수수수염 분말의 입자크기, 색도, 이화학적 특성 및 항산화 활성간의 상관관계를 분석한 결과 서로 유의적 관계를 보였으며 특히 입자크기가 작아질수록 명도, 적색도, 황색도, 총 페놀 함량, ascorbic acid equivalents, TEAC에서 고도로 유의한 상관관계를 보였다.

Keywords

References

  1. Halliwell, B and J. M. C. Gutteridge. 1998. In free radicals in biology and medicine. Oxford University Press. Oxford, U.K.
  2. Han M. R., A. J. Kim, M. J. Chang, S. J. Lee, H. S. Kim and M. H. Kim. 2009. Investigation of physical property change in modified corn starch by ultra fine pulverization. Food Engine. Prog. 13, 335-340.
  3. Han M. R., M. J. Chang and M. H. Kim. 2007. Investigation of physical property change in modified rice starch by ultra fine pulverization. J. Korean Soc. Appl. Biol. Chem. 50, 160-166.
  4. Hashimoto, N. M. A., M. I. Genovese and F. M. Lajolo. 2005. Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps. J. Agric. Food Chem. 53 : 2928-2935. https://doi.org/10.1021/jf047894h
  5. Hwang J. Y., Ham J. Y. and S. H. Nam 2004. The antioxidant activity of Maesil (Prunus mume). Korean J. Food Sci. Technol. 36(3) : 461-464
  6. Jang H. W. Lee H. J. and K. G. Lee. 2005. Analysis and antioxidant activity of volatile extracts from plants commonly used in Korean foods. Korean J. Food Sci. Technol. 37(5) : 729-729.
  7. Kang S. H., 1995. Powder technology. Sci. Tech. Media, Seoul, Korea.
  8. Kim D. W., K. S. Chang, U. H. Lee and S. S. Kim. 1996. Moisture sorption characteristics of model food powders. Korean J. Food Sci. Technol. 28 : 1146-1150.
  9. Kim E. Y., Baik I. H., Kim J. H., Kim S. R. and M. R. Rhyu 2004 Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36(2) : 333-338.
  10. Kim H. B., S. H. Koh and Y. S. Seok. 2006. Anti-oxidative effect of 'Cheongilppong' with mulberry leaves according to different collection areas and some kinds of mulberry branches. Korean J. Seric. Sci. 48(2) : 41-45.
  11. Kim, J. S., S. H. Lee, H. Y. Lee, K. H. Kim and Y. I. Kim. 1993. Effects of different milling methods on physico-chemical properties and products. Korean J. Food Sci. Technol. 25 : 546-551.
  12. Kim S. L., M. E. Snook and J. O. Lee. 2003. Radical scavenging activity and cytotoxicity of maysin (C-glycosylflavone) isolated from silks of Zea mays L. Korean J. Crop Sci. 48 : 392-396
  13. Kim, T. Y., T. W. Jeon, S. H. Yeo, S. B. Kim, J. S. Kim and J. S. Kwak. 2010. Antimicrobial, antioxidant and SOD-like activity effect of Jubak extracts. Korea J. Food Nutr. 23, 229-305.
  14. Ko J. W., W. Y. Lee, J. H. Lee, Y. S. Ha and Y. H. Choi. 1999. Absorption characteristics of dried shiitake mushroom powder using different drying methods. Korean J Food Sci. Technol. 31 : 128-137.
  15. Ku, K. M., S. K. Kim and Y. H. Kang. 2009. Antioxidant activity and functional components of corn silk (Zea mays L.). Korean J. Plant Res. 22, 323-329.
  16. Kuo, J. M., D. B. Yeh and A. Hwang. 1998. A rapid photometric assay for determining antioxidative activity. IFT Annu. Meet. Abstract 72A-1.
  17. Kuo, J. M., D. B. Yeh and B. S. Pan. 1999. Rapid photometric assay evaluating antioxidative activity in edible plant material. J. Agric. Food Chem. 47 : 3206-3209. https://doi.org/10.1021/jf981351o
  18. Kwan J. J., J. g. Lee and O. C. Kim. 1999. Volatile compounds of corn silk (Zea may L.). Korean J. Food Nutr. 12 : 375-379.
  19. Lee, E. A., P, F. Byrne, M. D. McMullen, M. E. Snook, B. R. Wiseman, N. W. Widstrom and E. H. Coe. 1998. Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea may L.). Genetics. 149 : 1997-2006.
  20. Lee, Y. C. and D. Yang. 2002. Determination of lysozyme activities in a micro-plate format. Anal. Biochem. 310, 223-224. https://doi.org/10.1016/S0003-2697(02)00320-2
  21. Lee, Y. T., H. M. Seog, M. K. Cho and S. S. Kim. 1996. Physicochemical properties of hull-less barley flours prepared with different grinding mills. Korea J. Food Nutr. 28 : 1078-1083.
  22. Lemanska, K., H. Szymusiak., B, Tycowska., R. Zielinski., A. E. M. F. Soffer and I. M. C. M. Rietjens. 2001. The influence of pH on the antioxidant properties and the mechanisms of antioxidant action of hydroxy-flavones. Free Radical Biological Medicine. 31 : 869-881. https://doi.org/10.1016/S0891-5849(01)00638-4
  23. Middleton E., C. Kandaswami. 1994. Potential health-promoting properties of citrus flavonoids. Food Technol. 48, 115-119.
  24. Park D. J., K. H. Ku and S. H. Kim. 1996. Characteristics and application of defected soybean meal fractions obtained by microparticulation / air-classification. Korean J. Food Sci. Technol. 28 : 497-505.
  25. Park Y. K., H. M. Seong, Y. J. Nam and D. H. Shin. 1988. Physicochemical properties of various milled rice flours. Korean J. Food Sci. Technol. 20 : 504-510.
  26. Rice-Evans C. A., N. J. Miller and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends in Plant Sci. 2, 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  27. Senpuku, H., H. Kato, M. Todoroki, N. Hanada and T. Nisizawa. 1996. Interaction of lysozyme with a surface protein antigen of Streptococcus mutans. FEMS Microbiol. Lett. 139, 195-201. https://doi.org/10.1111/j.1574-6968.1996.tb08202.x
  28. Song J. C. and H. J. Park 1997. New food processing. Yulim Publishing, Seoul, Korea. pp. 105-120.
  29. Touch, V., S. Hayakawa, S. Yamada and S. Kaneko. 2004. Effects of a lactoperoxidase-thiocyanate-hydrogen peroxide system on salmonella enteritidis in animal or vegetable foods. Int. J. Food Microbiol. 93, 175-183. https://doi.org/10.1016/j.ijfoodmicro.2003.11.004
  30. Tsai, P. J. and C. H. Sheu. 2006. The significance of phenolprotein interactions in modifying the antioxidant capacity of pea. J. Agric. Food Chem. 54, 8491-8494. https://doi.org/10.1021/jf061475y
  31. Tsai, P. J., S. C. Wn and Y. K. Cheng. 2008. Role of polyphenols in antioxidant capacity of napiergrass from different growing seasons. Food Chem. 106, 27-32. https://doi.org/10.1016/j.foodchem.2007.05.037
  32. Tsai, P. J., Y. S. Chen, C. H. Sheu and C. Y. Chen. 2011. Effect of nanogrinding on the pigment and bioactivity of Djulis (Chenopodium formosanum Koidz). J. Agric. Food Chem. 59, 1814-1820. https://doi.org/10.1021/jf1041273
  33. Weiss, J., P. Takhistov and D. J. McClements. 2006. Functional materials in food nanotechnology. J. Food Sci. 71, 107-116. https://doi.org/10.1111/j.1750-3841.2006.00195.x
  34. Wu, C. L. 2005. Assessment of curcumin nanoparticles on bioactivities using cultured cells model. Master's thesis, National Taiwan Ocean University.
  35. Yoo, K. M., D. O. Kim and C. Y. Lee. 2007. Evaluation of different methods of antioxidant measurement. Food. Sci. Biotechnol. 16 : 177-182.

Cited by

  1. Physicochemical Characteristics of the Sorghum(Sorghum bicolor L. Moench) Powder following Low Temperature-Microparticulation vol.25, pp.3, 2012, https://doi.org/10.9799/ksfan.2012.25.3.656
  2. Antioxidative and Protective Effects of Corn Silk (Zea mays L.) Extract on Human HaCaT Keratinocyte vol.61, pp.3, 2016, https://doi.org/10.7740/kjcs.2016.61.3.184
  3. Effect of In Vitro Antioxidant Properties and Extract of Corn Husk on Serum Lipids in Mice vol.25, pp.2, 2015, https://doi.org/10.17495/easdl.2015.4.25.2.261
  4. Effect of Particle Size on Antioxidant Activity and Cytotoxicity in Purple Corn Seed Powder vol.57, pp.4, 2012, https://doi.org/10.7740/kjcs.2012.57.4.353
  5. Assessment of Validation Method for Bioactive Contents of Fermented Soybean Extracts by Bioconversion and Their Antioxidant Activities vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.680
  6. Rapid discovery and global characterization of multiple components in corn silk using a multivariate data processing approach based on UHPLC coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry vol.41, pp.21, 2018, https://doi.org/10.1002/jssc.201800605
  7. 옥수수수염 알코올 추출물의 항염 및 항아토피 효과 vol.49, pp.6, 2012, https://doi.org/10.9721/kjfst.2017.49.6.710
  8. 국내산 아피오스 첨가 국수의 항산화 활성 및 품질 특성 vol.31, pp.6, 2012, https://doi.org/10.9799/ksfan.2018.31.6.844
  9. Effect of Roasting Time and Cryogenic Milling on the Physicochemical Characteristics of Dried Ginseng Powder vol.9, pp.2, 2012, https://doi.org/10.3390/foods9020223