DOI QR코드

DOI QR Code

Antioxidant Activity and Cytotoxicity of Different Taraxacum Species in Korea

국내 자생 민들레의 종류별 항산화성 및 세포독성 연구

  • 천상욱 (조선대학교 BI센터 (주)이파리넷)
  • Received : 2012.01.25
  • Accepted : 2012.03.04
  • Published : 2012.03.30

Abstract

Contents of phenolics and flavonoids, antioxidant activity and cytotoxicity were investigated in the methanol extracts of three different $Taraxacum$ species, $Taraxacum$ $coreanum$, $Taraxacum$ $mongolicum$, and $Taraxacum$ $officinale$. Total phenolics content at $1000mg\;kg^{-1}$ was more present in shoot parts than in roots, and was highest in $T.$ $mongolicum$ shoot and root extracts (76.8 and $40.0mg\;kg^{-1}$, respectively), followed by $T.$ $coreanum$ and $T.$ $officinale$ ($p$ < 0.05). Total flavonoid level had same tendency to total phenolics among $Taraxacum$ species, showing lower amounts ($6.5{\sim}36.4mg\;kg^{-1}$) than total phenolics. The antioxidant activity of the methanol extracts from all the species dose-dependently increased. DPPH free radical scavenging activity at $1,000mg\;kg^{-1}$ was highest in shoot and root extracts from $T.$ $mongolicum$ by 89.6 and 83.4%, respectively. According to MTT assay, cell viability of Calu-6 (human pulmonary carcinoma) was lowest in the $T.$ $mongolicum$ shoot and root extracts ($IC_{50}$ values=83.4 and $66.4mg\;kg^{-1}$, respectively), and followed by $T.$ $coreanum$ and $T.$ $officinale$ (lowest). Calu-6 was more sensitive to the extracts than SNU-601 (human gastric carcinoma). Antioxidative and anticancer activities in three different $Taraxacum$ species was more correlated with total phenolics content ($r^2$=0.0097 to 0.6213) than with total flavonoids level ($r^2$=0.0027 to 0.4627). The results showed total phenolics content and total flavonoids level were highly correlated with anticancer activity and antioxidant activity, and their content and activities were different depending on species.

민들레의 종류별 성분 및 생리활성 차이를 검토하고자 폴리페놀 함량, 플라보노이드 함량, 항산화성 및 항암성을 분석하였다. 민들레 종류별 $1000mg\;kg^{-1}$의 메탄올 추출물의 총 페놀 함량은 지상부 추출물이 $50.2{\sim}76.8mg\;kg^{-1}$범위로 지하부 추출물 $24.9{\sim}40.0mg\;kg^{-1}$범위보다 높게 나타났으며, 종별로는 민들레가 가장 높았고, 그 다음으로 흰민들레와 서양민들레 순으로 나타났다. 민들레의 지상부 및 지하부 추출물에서 각각 76.8과 $40.0mg\;kg^{-1}$를 보여 유의적으로 가장 높은 함량을 보였다($p$ < 0.05). 한편, 총 플라보노이드 함량은 총 페놀 함량과 유사한 경향을 보였으나 총 페놀 함량보다 낮은 함량 범위($6.5{\sim}36.4mg\;kg^{-1}$)를 보였다. DPPH 라디컬 소거능은 추출물 농도가 증가할수록 높은 활성을 보였으며 민들레의 지상부와 뿌리 추출물 $1,000mg\;kg^{-1}$에서 DPPH 라디컬 소거능은 각각 89.6와 83.4%의 소거능을 보여 다른 두 종보다 높은 활성을 보였다. MTT법에 의한 세포독성 시험에서 민들레 종류별 지상부와 지하부 추출물의 폐암세포주(Calu-6)에 대한 세포 생존율은 민들레 추출물에서 가장 낮았고($IC_{50}$값 = 83.4과 $66.4mg\;kg^{-1}$), 그 다음으로 흰민들레와 서양민들레 순으로 높은 생존율을 보여 민들레가 다른 두 종에 비해 높은 세포독성이 있음을 보여 주었다. 한편, 위암세포주(SNU-601)에 대한 세포 생존율은 폐암세포주에 비해 상대적으로 높은 경향으로 이는 추출물이 더 낮은 항암활성을 갖고 있음을 나타냈다. 각 성분과 생리활성 항목간의 상관관계에 있어서 총 페놀 함량과 항산화 활성 또는 세포독성 항목간의 상관관계($r^2$=0.0097~0.6213)는 총 플라보노이드 함량과 항산화 활성 또는 세포독성 항목간 상관관계($r^2$=0.0027~0.4627) 보다 높게 나타났다. 결과적으로 총 페놀 함량과 총 플라보노이드 함량이 항산화성 및 세포독성 과 높은 연관성을 보이며, 그 함량과 활성은 민들레 종류에 따라 다르게 나타났다.

Keywords

References

  1. Baba, K., S. Abe and D. Mizuno. 1981. Antitumor activity of hot water extract of dandelion, Taraxacum officinale correlation between antitumor activity and timing of administration. Yakugaku Zasshi. 101 : 538-543. https://doi.org/10.1248/yakushi1947.101.6_538
  2. Banwart, W. L., P. M. Porter, T. C. Granato and J. J. Hassett. 1985. HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids. J. Chem. Ecol. 11 : 383-395. https://doi.org/10.1007/BF01411424
  3. Blosi, M. S. 1958. Antioxidant determinations by use of a stable free radical. Nature 26 : 1199-1200.
  4. Cho, Y. S., J. Y. Park, Y. J. Oh and J. Y. Jang. 2000. Effect of dandelion leaf extracts on lipid metabolism in rats fed high cholesterol diet. J. Korean Soc. Food Sci. Nutri. 29 : 676-682.
  5. Choi, J. S., S. H. Park and I. S. Kim. 1989. Studies on the active principles of wild vegetables on biotransformation of drug. Kor. J. Pharmacogn. 20 : 117-122.
  6. Gray, J. I. and L. R. Jr. Dugan. 1975. Inhibition of N-nitrosamine formation in model food systems. J. Food Sci. 40 : 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  7. Han, S. H., J. K. Hwang, S. N. Park, K. H. Lee, K. I. Ko, K. S. Kim and K. H. Kim. 2005. Potential effect of solvent fractions of Taraxacum mongolicum H. on protection of gastric mucosa Korean J. Food Sci. Technol. 37(1) : 84-89.
  8. Ho, C., E. J. Choi, G. S. Yoo, K. M. Kim and S. Y. Ryu. 1998. Desacetylmatricarin, an anti-allergic component from Taraxacum platycarpum. Planta Med. 64 : 577-578. https://doi.org/10.1055/s-2006-957520
  9. Hu, C. and D. K. David. 2003. Antioxidant, prooxidant, and cytotoxic activities of solvent-fractionated dandelion (Taraxacum officinale) flower extracts in vitro. J. Agric. Food Chem. 51 : 301-310. https://doi.org/10.1021/jf0258858
  10. Kang, M J., S. R. Shin and K. S. Kim. 2002. Antioxidative and free radical scavenging activity of water extract from dandelion (Taraxacum officinale). Korean J. Food Preserv. 9(2) : 253-259.
  11. Kang, M. J. 2001. Antioxidant activity and free radical scavenging effect of dandelion extract. PhD thesis, Yeungnam University, Kyungsan, Korea.
  12. Kang, M. J., Y. H. Seo, J. B. Kim, S. R. Shin and K. S. Kim. 2000. The chemical composition of Taraxacum officinale consumed in Korea. Korean J. Soc. Food Sci. 16 : 182-187.
  13. Kim, D. H. 1995. Antitumor activity of fractions of Taraxaci Herba synergistic effect with anticancer drugs. M.S. thesis, Taejon Univ.
  14. Kim, S. D., M. H. Kim and D. H. Kim. 2000. Effect of dandelion extracts on the growth of lactic acid bacteria and gas formation from Kimchi. Korean J. Postharvest Sci. Technol. 7 : 321-325.
  15. Kim, S. K. 1991. Effect of Herba Taraxaci extract on the antialgesia and antiinflammatory. M.S. thesis, Wonkang University.
  16. Koh, Y. J., D. S. Cha, H. D. Choi, Y. K. Park, and I. W. Choi. 2008. Hot water extraction optimization of dandelion leaves to increase antioxidant activity. Korean J. Food Sci. Technol. 40(3) : 283-289.
  17. Kotobuki, H., A. Akira, Y. Itaru, N. Shigehiko, H. Zen-ichi and N. Ichiya. 1965. Antitumor avtivity of 4(or 5)-aminoimidazole-5(or 4)-carboxamide derivatives. GANN Japanese Journal of Cancer Research. 56(4) : 417-420.
  18. Krygier, K., F. Sosulski and H. Lawrence. 1982. Free, esterified and insoluble-bound phenolic acids. 1. Extraction and purificition procedure. J. Agric. Food Chem. 30 : 330-334. https://doi.org/10.1021/jf00110a028
  19. Lee, B. W. and D. H. Shin. 1991. Screening of natural antimicrobial plant extract on food spoilage microorganism. Korean J. Food Sci. Technol. 23 : 200-204.
  20. Lee, C. B. 1980. Plant Flora of Korea. Hyangmoonsa, Seoul, Korea. pp. 783-784.
  21. Lee, E. B., J. K. Kim and O. K. Kim. 1993. The antigastritic effect of Taraxaci Herba. Kor. J. Pharmacogn. 24 : 313-318.
  22. Lister, C. E., J. E. Lancaster, K. H. Sutton and J. R. L. Walker. 1994. Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. J. Science Food and Agric. 64 : 155-161. https://doi.org/10.1002/jsfa.2740640204
  23. Mascolo, N., G. Autore, F. Capasso, A. Menghini and M. P. Fasulo. 1987. Biological screening of Italian medicinal plants for anti-inflammatory activity. Phytother. Res. 1 : 28-31. https://doi.org/10.1002/ptr.2650010107
  24. Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol Methods. 65 : 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  25. Park, S. H. 1995. Naturalized Plant Flora in Korea. Iljogak. Seoul, Korea. pp. 346-349.
  26. Racz-Kotilla, E., G. Racz and A. Solomon. 1974. The action of Taraxacum officinale extracts on the body weight and diuresis of laboratory animal. Planta Media. 26 : 212-217. https://doi.org/10.1055/s-0028-1099379
  27. SAS (Statistical Analysis Systems) Institute. 2000. SAS/STAT user's guide. Version 7. Electronic Version. Cary, NC, USA.
  28. Shahidi, F., P. K. Janitha and P. D. Wanasundara. 1992. Phenolic antioxidants. Critical Review in Food Science and Nutrition. 32 : 67-103. https://doi.org/10.1080/10408399209527581
  29. Singleton, V. L. and J. A. Rossi. 1965. A colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16 : 144-158.
  30. Sun, J., Y. F. Chu, X. Z. Wu and R. H. Liu. 2002. Antioxidant and anti proliferative activities of common fruits. J. Agric. Food Chem. 50 : 7449-7454. https://doi.org/10.1021/jf0207530
  31. Takasaki, M., T. Konoshima, H. Tokuda, K. Masuda, Y. Arai, K. Shiojima and H. Ageta. 1999a. Anti-carcinogenic activity of Taraxacum plant. I. Biol. Pharm. Bull. 22 : 602-605. https://doi.org/10.1248/bpb.22.602
  32. Takasaki, M., T. Konoshima, H. Tokuda, K. Masuda, Y. Arai, K. Shiojima and H. Ageta. 1999b. Anti-carcinogenic activity of Taraxacum plant. II. Biol. Pharm. Bull. 22 : 606-610. https://doi.org/10.1248/bpb.22.606
  33. Williams, C. A., F. Goldstone and J. Greenham. 1996. Flavonoids, cinnamic acids and coumarins from the different tissues and medicinal preparations of Taraxacum officinale. Phytochemistry. 42 : 121-127. https://doi.org/10.1016/0031-9422(95)00865-9
  34. Zhou, K. and L. Yu. 2006. Total phenolic contents and antioxidant properties of commonly consumed vegetables grown in Colorado. LWT. 39 : 1155-1162. https://doi.org/10.1016/j.lwt.2005.07.015

Cited by

  1. Anti-Inflammatory Activities of Extracts from Fermented Taraxacum platycarpum D. Leaves Using Hericium erinaceum Mycelia vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.020
  2. Effect of Five Korean Native Taraxacum on Antioxidant Activity and Nitric Oxide Production Inhibitory Activity vol.21, pp.3, 2013, https://doi.org/10.7783/KJMCS.2013.21.3.191
  3. Antioxidant and Anti-inflammatory Effects of Taraxacum hallaisanense Nakai Extracts vol.26, pp.3, 2018, https://doi.org/10.11625/KJOA.2018.26.3.501
  4. 홍화씨와 흰민들레 복합물의 Scopolamine 유도 기억력 손상에 대한 보호 효과 vol.28, pp.2, 2012, https://doi.org/10.7783/kjmcs.2020.28.2.85