Characteristics of Marine Environmental in the Hypoxic Season at Jinhae bay in 2010

2010년 진해만 빈산소수괴 발생시 환경변화 특성

  • 김숙양 (국립수산과학원 어장환경과) ;
  • 이용화 (국립수산과학원 어장환경과) ;
  • 김영숙 (국립수산과학원 어장환경과) ;
  • 심정희 (국립수산과학원 어장환경과) ;
  • 예미주 (국립수산과학원 어장환경과) ;
  • 전지원 (국립수산과학원 어장환경과) ;
  • 황재란 (국립수산과학원 어장환경과) ;
  • 전상호 (강원대학교 환경과학과)
  • Published : 2012.12.31

Abstract

As for the Jinhae bay in 2010, hypoxia under DO concentration 3 mg/L began to form from the station where thermocline formed in the early June, and hypoxia disappeared in the late October as thermocline did. DIP and DIN was much higher in the bottom water of the sea where hypoxia occurred, and pH showed its low distribution. IL, COD and AVS of the surface sediment were shown relatively high at the station which is affected by the inflow of land water from the bay Masan bay and at the station where hypoxia remains for a long time. As for benthos distribution, macrobenthos never appeared at the survey station 8 and 23 which are near the bay Hangam bay and Gohyeonseong bay and macrobenthos appeared most diversely at the survey station 11 where hypoxia did not occur. Density was also minimum at the survey station 19, 21, and 23 where hypoxia occurred, whereas density was relatively high at the survey station 11, 13 and 14 where oxygendeficient phenomenon did not occurred. Meanwhile, biomass was lowest at the survey station 23 which is affected by sewage coming from the bay Wonmun bay and shipbuilding industry, whereas biomass was highest at the survey station 14 and 11. As for benthos of the Jinhae bay, species richness and diversity was relatively high at the survey station 11, 12, 13 and 14 where hypoxia did not occur, and thus it showed relatively good benthic community structure. Like this, hypoxia appears in the bay Jinhae bay for about 5 to 6 months annually, and during that period, most of the marine environmental factors appear to be abnormal. Therefore, we need the fundamental measures to reduce hypoxia for the purpose of producing marine products continuously.

Keywords

References

  1. 강영실, 박주석, 이삼석, 김학균, 이필용. 1996. 진해만 수질환경과 동물플랑크톤 군집 및 요각류 분포 특성. 한국수산학회지 29(4): 415-430.
  2. 국립수산과학원. 2009. 한국연안의 빈산소수괴.
  3. 김숙양, 전산호, 이영식, 이용화, 김병만. 2011. 가막만 빈산소발생시 해수-퇴적물 경게면에서 인산염 플럭스 특성. 한국 환경과학회지 20(9): 1069-1078.
  4. 김차겸, 이필용. 1994. 진해만의 수괴구조와 용존산소 분포. 한국수산학회지 27(5): 572-582
  5. 이인철, 오유진, 김현태. 2008. 진해만 빈산소수괴의 경년변동 특성. 한국수산학회지 41(2): 134-139.
  6. 이필용, 박주석, 강청미, 최희구, 박종수. 1993. 진해만 저산소수괴 현성에 관한 연구, 진해만에서의 영양염류와 용존산소의 연변화. 한국해양학회지, 26(3): 204-222.
  7. 임동일, 김영옥, 강미란, 장풍국, 신경순, 장만. 2007. 한국남해 마산만에서 수질환경의 계절적 변동과 기초 생산 제한 인자. Ocean and Polar Research 29(4): 349-366. https://doi.org/10.4217/OPR.2007.29.4.349
  8. 조창완. 1979. 1978년 진해만 적조와 양식 굴의 대량폐사. 한국수산학회지, 12(1): 27-33.
  9. 조홍연, 채장원, 전시영. 2002. 진해.마산만의 성층화 및 DO 농도 변화, 한국해안.해양공학회지 14(4): 295-307.
  10. 해양수산부. 2002. 해양환경공정시험법. 330pp.
  11. 해양수산부. 2006. 가막만 환경보전해역 관리 기본계획. 49pp.
  12. 홍기훈, 김경태, 배세진, 김석현, 이수형. 1991. 영양염류가 풍부한 온대해역 내만(한국, 진해만)에서의 영양염류와 용존산소의 연변화. 한국해양학회지 26(3): 204-222.
  13. 홍재상. 1987. 1983년 하계 진해만 일대 해역의 저서생물의 생태학적 연구(저서생물과 저층 용존산소량과의 관계를 중심으로). 해양연구보고서, BSPE 00095-159-3.
  14. Bray, J. R. and Curtis. 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27: 325-349. https://doi.org/10.2307/1942268
  15. Cho, K. J., Choi, M. Y., Kwak, S. K., Im, S. H., Kim, D. Y., Park, J. G., and Kim, Y. E. 1998. Eutrophication and seasonal variation of water quality in Masan-Jinhae Bay. J. Kor. Soc. Oceanogr. 3: 193-202.
  16. Goldman, J. C., McCarthy, J. J., and Peavey, D. G. 1979. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279: 210-215. https://doi.org/10.1038/279210a0
  17. Hakanson, L. and Jansson, M. 1983. Principles of lake sedimentology. Spriinger-Verlag, Berlin, p 316.
  18. Hong, S. J., Lee, W. C., Park, J. S., Oh, H. T., Yoon, S. P., Kim, H. C., and Kim, D. M. 2007. Ecological modeling for estimation of autochthonous COD in Jinhae bay. J. of Environmental Sciences 16(8): 959-971. https://doi.org/10.5322/JES.2007.16.8.959
  19. Okaichi, T. 1972. Occurrence of red tide in related to neritic water pollution. In: The cause of red tide in neritic waters. Japanese Association for the protection of Fisheries Resources. Tokyo, 58-76.
  20. Kountoura, K. and Zacharias, I. 2011. Temporal and spatial distribution of hypoxic/seasonal anoxic zone in Amvrakikos Gulf, Western Greece. Esturine Coastal and shelf Science 94: 123-128. https://doi.org/10.1016/j.ecss.2011.05.014
  21. Pielou, E. C. 1977. Mathematical Ecology. Wiley Company. New York, 164pp.
  22. Lane, R. R., Day, J. W., Justic, D., Reyes, E., Marx, B., Day, J. N., and Hyfield, E. 2004. Changes in stoichiometric Si, N and P ratios of Mississippi River water diverted throuhj coastal wetlands to the Gulf of Mexico. Esturine, coastal and shelf Science 60: 1-10. https://doi.org/10.1016/j.ecss.2003.11.015
  23. Shannon, C. E. and Weaver, W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, 125pp.
  24. Stefansson, U. and Richards, F. A. 1963. Processes contribution to the nutrient distribution off the Columbia river and Strait Juan De Fuca, Limnol. Oceanogr. 8: 194-210.
  25. Tsunogai, S. 1979. Dissolved silica as the primary factor determining the composition of phytoplankton classes in the ocean. Mem. Fac. Fish. Hokkaido Univ. 30(4): 314- 322.
  26. Williams, J. D. H., Sher, H., and Thomas, R. L. 1980. Availability to Senedesmus quadricauda of different forms of phosphorus in sedimentary materials from the Great Lakes. Limnol. Oceanogr. 25: 1-11. https://doi.org/10.4319/lo.1980.25.1.0001
  27. Williams, J. D. H., Jaquet, M., and Thomas, R. L. 1976. Forms of phosphorus in the surficial sediments of lake Erie. J. Fisg. Res. Board Can. 33: 413-429. https://doi.org/10.1139/f76-063
  28. Wong, G. T. F., Liu, K.-K., and Pai, S.-C. 1998. "Excess Nitrate" in the East China Sea, Esturine, Coastal and Shelf Science. 46: 411-418. https://doi.org/10.1006/ecss.1997.0287
  29. 井上裕雄. 1998. 堆積物環境, 沿岸の環境圈, フジテクノシス テム.