DOI QR코드

DOI QR Code

Effect of simultaneous etching and N-doping on the surface and electrochemical properties of AC

  • Lim, Jae Won (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jeong, Euigyung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Jung, Min Jung (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University) ;
  • Lee, Sang Ick (Carbon Materials Development Team, Value Creation Center, GS Caltex Corporation) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, BK21-E2M, Chungnam National University)
  • Published : 2012.01.25

Abstract

To improve the electrical performance of activated carbon (AC)-based electric double-layer capacitors (EDLCs), the surface of AC was modified with gas phase ammonia treatment at 1073 K with different treatment times to carry out simultaneous etching and N-doping. The effects of the treatment on AC surfaces and their electrochemical properties were investigated. The specific capacitances of samples treated for 22 min were increased to 426 F/g at scan rates of 10 mV/s, which corresponded to a 76.8% increase as compared with 241 F/g of samples measured as received from the manufacturer. The increase is attributed to an increase in the specific surface area and the total pore, micro- and mesopore volumes due to the etching effect of the high-temperature ammonia gas reaction. Moreover, N-functional groups, which were introduced by the treatment, also aided to improve the electrochemical properties of the resulting AC-based electrode. Therefore, the simultaneous etching and N-doping method with ammonia gas at high temperature can easily introduce nitrogen functional groups on the AC surface. In addition, the reaction of nitrogen gas with AC can affect its specific surface area and surface pore structure, which is very effective in preparing AC for EDLCs with improved electrochemical properties.

Keywords

References

  1. M.F. Rose, C. Johnson, T. Owen, B. Stephen, J. Power Sources 47 (1994) 303. https://doi.org/10.1016/0378-7753(94)87009-8
  2. S. Yang, I.J. Kim, M.J. Jeon, K. Kim, S.I. Moon, H.S. Kim, K.H. An, J. Ind. Eng. Chem. 14 (2008) 365. https://doi.org/10.1016/j.jiec.2008.01.013
  3. A.S. Arico, P. Bruce, J.M. Tarascon, W. Van-Schalkwijk, Nat. Mater. 4 (2005) 366. https://doi.org/10.1038/nmat1368
  4. R. Kotz, M. Carlen, Electrochim. Acta 45 (2000) 2483. https://doi.org/10.1016/S0013-4686(00)00354-6
  5. K.Y. Kang, S.J. Hong, B.I. Lee, J.S. Lee, Electrochem. Commun. 10 (2008) 1105. https://doi.org/10.1016/j.elecom.2008.05.029
  6. E. Lust, A. Janes, T. Parn, P. Nigu, J. Solid State Electrochem. 8 (2004) 224. https://doi.org/10.1007/s10008-003-0396-6
  7. M. Arulepp, L. Permann, J. Leis, A. Perkson, K. Rumma, A. Janes, E. Lust, J. Power Sources 133 (2004) 320. https://doi.org/10.1016/j.jpowsour.2004.03.026
  8. M.J. Bleda-Martinez, D. Lozano-castello, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano, Carbon 44 (2006) 2642. https://doi.org/10.1016/j.carbon.2006.04.017
  9. E. Frackowiak, Phys. Chem. Chem. Phys. 9 (2007) 1774. https://doi.org/10.1039/b618139m
  10. Y.J. Kim, Y. Abe, T. Yanagiura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M.S. Dre, Carbon 45 (2007) 2116. https://doi.org/10.1016/j.carbon.2007.05.026
  11. M.J. Bleda-Martinez, J.A. Macia-Agullo, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano, Carbon 43 (2005) 2677. https://doi.org/10.1016/j.carbon.2005.05.027
  12. E.R. Thomas, H.J. Denisa, Z. Zhonghua, G.Q. Lu, Electrochem. Commun. 10 (2008) 1594. https://doi.org/10.1016/j.elecom.2008.08.022
  13. M. Kawaguchi, A. Itoh, S. Yagi, H. Oda, J. Power Sources 172 (2007) 481. https://doi.org/10.1016/j.jpowsour.2007.07.023
  14. W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, D. Zhao, Carbon 45 (2007) 1757. https://doi.org/10.1016/j.carbon.2007.05.004
  15. T. Savage, S. Bhattacharya, B. Sadanadan, J. Gaillard, T.M. Tritt, Y.P. Sun, J. Phys. Conden. Mater. 15 (2003) 5915. https://doi.org/10.1088/0953-8984/15/35/301
  16. A. Felten, C. Bittencourt, J.J. Pireaux, Nanotechnology 17 (2006) 1954. https://doi.org/10.1088/0957-4484/17/8/026
  17. T. Hoshidaa, D. Tsubonea, K. Takadaa, H. Kodamab, T. Hasebec, A. Kamijod, T. Suzukia, A. Hottaa, Surf. Coat. Technol. 202 (2007) 1089. https://doi.org/10.1016/j.surfcoat.2007.07.087
  18. Z. Hruska, X. Lepot, J. Fluorine Chem. 105 (2000) 87. https://doi.org/10.1016/S0022-1139(00)00292-X
  19. Y. Hattori, H. Kanoh, F. Okino, H. Touhara, D. Kasuya, M. Yudasaka, S. Iijima, K. Kaneko, J. Phys. Chem. B 108 (2004) 9614. https://doi.org/10.1021/jp037912i
  20. K. Jurewicz, L. Babel, A. Ziolkowski, H. Wachowska, Electrochim. Acta 48 (2003) 1491. https://doi.org/10.1016/S0013-4686(03)00035-5
  21. J. Przepiorski, J. Hazard. Mater. B 135 (2006) 453. https://doi.org/10.1016/j.jhazmat.2005.12.004
  22. M. Matsuguchi, K. Tamai, Y. Sakai, Sens. Actuators B: Chem. 77 (2001) 363. https://doi.org/10.1016/S0925-4005(01)00735-3
  23. J. Przepiorski, M. Skrodzewicz, A.W. Morawski, Appl. Surf. Sci. 225 (2004) 235. https://doi.org/10.1016/j.apsusc.2003.10.006
  24. K. Jurewicz, K. Babel, A. Ziolkowski, H. Wachowska, M. Kozlowski, Fuel Process. Technol. 77 (2002) 191.
  25. L. Xu, J. Guo, F. Jin, H. Zeng, Chemosphere 62 (2006) 823. https://doi.org/10.1016/j.chemosphere.2005.04.070
  26. T.W. Little, F.S. Ohuchi, Surf. Sci. 445 (2000) 235. https://doi.org/10.1016/S0039-6028(99)01061-4
  27. J.S. Im, S.M. Yun, Y.C. Nho, P.H. Kang, H.K. Jin, Y.S. Lee, Carbon Lett. 10 (2009) 314. https://doi.org/10.5714/CL.2009.10.4.314
  28. J.S. Im, I.J. Park, S.J. In, T.J. Kim, Y.S. Lee, J. Fluorine Chem. 130 (2009) 1111. https://doi.org/10.1016/j.jfluchem.2009.06.022
  29. H. Oda, A. Yamashita, S. Minoura, M. Okamoto, T. Morimoto, J. Power Sources 158 (2006) 1510. https://doi.org/10.1016/j.jpowsour.2005.10.061
  30. K. Yamamoto, Y. Koga, S. Fujiwara, Jpn. J. Appl. Phys. 40 (2001) L123. https://doi.org/10.1143/JJAP.40.L123
  31. E. Raymundo-Pinero, D. Cazorla-Amoros, A. Linares-Solano, Carbon 41 (2003) 1925. https://doi.org/10.1016/S0008-6223(03)00180-5
  32. J.N. Kim, M.K. Choi, R. Ryoo, Bull. Korean Chem. Soc. 29 (2008) 413. https://doi.org/10.5012/bkcs.2008.29.2.413
  33. G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, E. Frackowiak, Chem. Phys. Lett. 404 (2005) 53. https://doi.org/10.1016/j.cplett.2005.01.074
  34. M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Carbon 46 (2008) 1475. https://doi.org/10.1016/j.carbon.2008.06.027
  35. R.S. Rathore, D.K. Srivastava, A.K. Agarwal, N. Verma, J. Hazard. Mater. 173 (2010) 211. https://doi.org/10.1016/j.jhazmat.2009.08.071
  36. S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity, second ed., Academy Press, London, 1982, p. 195.
  37. H.Y. Liu, K.P. Wang, H. Teng, Carbon 43 (2005) 559. https://doi.org/10.1016/j.carbon.2004.10.020
  38. E. Frackowiak, F. Beguin, Carbon 39 (2001) 937. https://doi.org/10.1016/S0008-6223(00)00183-4
  39. C. Portet, P.L. Taberna, P. Simon, E. Flahaut, J. Power Sources 139 (2005) 371. https://doi.org/10.1016/j.jpowsour.2004.07.015
  40. K. Okajima, A. Ikeda, K. Kamoshita, M. Sudoh, Electrochim. Acta 51 (2005) 972. https://doi.org/10.1016/j.electacta.2005.04.055
  41. A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak, Electrochim. Acta 50 (2005) 2799.
  42. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, Y. Yang, Electrochem. Commun. 10 (2008) 795. https://doi.org/10.1016/j.elecom.2008.02.033
  43. S.G. Kim, J.B. Yim, K.M. Kim, Y.W. Lee, M.S. Kim, A.S. Kang, J. Korean Ins. Chem. Eng. 39 (2001) 424.
  44. N.D. Kim, W. Kim, J.B. Joo, S. Oh, P. Kim, Y. Kim, J. Yi, J. Power Sources 180 (2008) 671. https://doi.org/10.1016/j.jpowsour.2008.01.055
  45. W. Xing, S.Z. Qiao, R.G. Ding, F. Li, G.Q. Lu, Z.F. Yan, H.M. Cheng, Carbon 44 (2006) 216. https://doi.org/10.1016/j.carbon.2005.07.029

Cited by

  1. Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1523
  2. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites vol.377, pp.1, 2012, https://doi.org/10.1016/j.jcis.2012.02.050
  3. Synthesis and high electrochemical performance of polyaniline/MnO2-coated multi-walled carbon nanotube-based hybrid electrodes vol.16, pp.8, 2012, https://doi.org/10.1007/s10008-012-1694-7
  4. 폴리아크릴로니트릴계 활성나노탄소섬유의 기공특성이 이산화탄소 흡착에 미치는 영향 vol.37, pp.5, 2013, https://doi.org/10.7317/pk.2013.37.5.592
  5. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities vol.4, pp.4, 2012, https://doi.org/10.1002/aenm.201300816
  6. 암모니아수 처리에 따른 바나듐 레독스 흐름전지용 탄소펠트 전극의 전기화학적 특성 vol.25, pp.3, 2012, https://doi.org/10.14478/ace.2014.1030
  7. 암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성 vol.25, pp.6, 2012, https://doi.org/10.14478/ace.2014.1105
  8. Hydrothermal synthesis of graphene-MnO2-polyaniline composite and its electrochemical performance vol.27, pp.7, 2012, https://doi.org/10.1007/s10854-016-4632-0
  9. 질소가 도핑 된 흑연섬유 발열체의 제조 및 발열특성 vol.28, pp.1, 2017, https://doi.org/10.14478/ace.2016.1111
  10. Nitrogen-Doped Multi-Scale Porous Carbon for High Voltage Aqueous Supercapacitors vol.6, pp.None, 2012, https://doi.org/10.3389/fchem.2018.00475
  11. Lignin‐derived heteroatom‐doped porous carbons for supercapacitor and CO2 capture applications vol.42, pp.8, 2018, https://doi.org/10.1002/er.4058
  12. Herbal residue-derived N, P co-doped porous hollow carbon spheres as high-performance electrocatalysts for oxygen reduction reaction under both alkaline and acidic conditions vol.329, pp.None, 2022, https://doi.org/10.1016/j.micromeso.2021.111556