DOI QR코드

DOI QR Code

Ethanol fermentation for main sugar components of brown-algae using various yeasts

  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, Silla University)
  • Published : 2012.01.25

Abstract

The conversion of marine biomass to renewable energy was widely considered an alternative to fossil fuel, especially with regards to bio-ethanol blending in gasoline. Due to the absence of carbohydrate content, brown algae was expected to be possible organism for achieving ethanol production, but the selected microorganism needs to effectively ferment. We carried out experiments with 8 types of yeast affiliated with each different family for ethanol production and tested the effects of different carbon sources. Low concentrations of substrate were found to mostly increase the cell growth from all different substrates, but a significant increase in ethanol production was detected on the mannitol substrate. Saccharomyces cerevisiae (KCCM50550) was found to produce the highest result among all yeast strains, and ethanol production reached 2.59 g/L from 10.0 g/L of mannitol. A higher content of ethanol production in the fermentation was evident when the carbon source concentration increased.

Keywords

References

  1. P.M. Schenk, S.R. Thomas-Hall, E. Stephens, U.C. Marx, J.H. Mussgnug, C. Posten, O. Kruse, B. Hankamer, Bioenerg. Res. 1 (2008) 20. https://doi.org/10.1007/s12155-008-9008-8
  2. A. Singh, P.S. Nigam, J.D. Murphy, Bioresour. Technol. 102 (1) (2011) 10. https://doi.org/10.1016/j.biortech.2010.06.032
  3. W.S. Cho, Y.H. Chung, B.K. Kim, S.J. Suh, W.S. Koh, S.H. Choe, J. Plant Biotechnol. 34 (2) (2007) 111. https://doi.org/10.5010/JPB.2007.34.2.111
  4. J. Xu, M.H. Thomsen, A.B. Thomsen, Appl. Biochem. Biotechnol. 162 (1) (2010) 33. https://doi.org/10.1007/s12010-009-8706-9
  5. T.H. Kim, F. Taylor, K.B. Hicks, Bioresour. Technol. 99 (2008) 5694. https://doi.org/10.1016/j.biortech.2007.10.055
  6. R.P. John, G.S. Anisha, K.M. Nampoothiri, A. Pandey, Bioresour. Technol. 102 (1) (2011) 186. https://doi.org/10.1016/j.biortech.2010.06.139
  7. J.I. Park, H.C. Woo, J.H. Lee, Korean Chem. Eng. Res. 46 (5) (2008) 833.
  8. S.M. Lee, J.H. Kim, H.Y. Cho, H. Joo, J.H. Lee, J. Korean Ind. Eng. Chem. 20 (5) (2009) 517.
  9. S.J. Horn, I.M. Aasen, K. Ostgaard, J. Ind. Microbiol. Biotechnol. 24 (2000) 51. https://doi.org/10.1038/sj.jim.2900771
  10. S.J. Horn, I.M. Aasen, K. Ostgaard, J. Ind. Microbiol. Biotechnol. 25 (2000) 249. https://doi.org/10.1038/sj.jim.7000065
  11. K. Ostgaard, M. Indergaard, S. Markussen, S.H. Knutsen, A. Jensen, J. Appl. Phycol. 5 (1993) 333. https://doi.org/10.1007/BF02186236
  12. S.M. Lee, J.H. Lee, Appl. Chem. Eng. 21 (2) (2010) 154.
  13. D.B. Choi, B.Y. Ryu, Y.L. Piao, S.K. Chio, B.W. Jo, W.S. Shin, H. Cho, J. Korean Ind. Eng. Chem. 14 (2008) 182. https://doi.org/10.1016/j.jiec.2007.08.011
  14. S.J. Horn, K. Ostgaard, J. Appl. Phycol. 13 (2001) 143. https://doi.org/10.1023/A:1011187526918

Cited by

  1. Recent advances in liquid biofuel production from algal feedstocks vol.102, pp.None, 2012, https://doi.org/10.1016/j.apenergy.2012.07.031
  2. 바이오 기반 경제를 위한 해조류 유래 바이오 연료 생산 vol.6, pp.1, 2012, https://doi.org/10.15433/ksmb.2014.6.1.008
  3. Macroalgae in biofuel production vol.63, pp.1, 2012, https://doi.org/10.1111/pre.12078
  4. A Review on Polymer/Cement Composite with Carbon Nanofiller and Inorganic Filler vol.55, pp.12, 2012, https://doi.org/10.1080/03602559.2016.1163594
  5. 갈조류 미역(Undaria pinnatifida)의 분리당화발효와 다양한 효모를 이용한 바이오에탄올의 생산 vol.44, pp.4, 2012, https://doi.org/10.4014/mbl.1610.10007
  6. Immobilized biocatalytic process development and potential application in membrane separation: a review vol.36, pp.1, 2012, https://doi.org/10.3109/07388551.2014.923373
  7. 홍조류(Kappaphycus alvarezii)의 동시 당화 발효를 이용한 바이오에탄올의 생산 vol.44, pp.2, 2016, https://doi.org/10.4014/mbl.1603.03001
  8. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila vol.9, pp.None, 2012, https://doi.org/10.1186/s13068-016-0494-1
  9. 홍조류(Eucheuma denticulatum)를 이용한 바이오에탄올 생산 vol.45, pp.4, 2012, https://doi.org/10.4014/mbl.1709.09002
  10. Interactions of mixing and reaction kinetics of depolymerization of cellulose to renewable fuels vol.205, pp.1, 2018, https://doi.org/10.1080/00986445.2017.1371015
  11. Enzyme Detection and Metabolic Process Tracking of Ethanol Fermentation by a Natural Alginate Fermentation Strain vol.61, pp.None, 2018, https://doi.org/10.1590/1678-4324-2018160418
  12. Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation vol.4, pp.4, 2012, https://doi.org/10.3390/fermentation4040099
  13. Optimization of hyper-thermal acid hydrolysis and enzymatic saccharification of Ascophyllum nodosum for ethanol production with mannitol-adapted yeasts vol.42, pp.8, 2012, https://doi.org/10.1007/s00449-019-02123-8
  14. Electrospinning Piezoelectric Fibers for Biocompatible Devices vol.9, pp.1, 2012, https://doi.org/10.1002/adhm.201901287
  15. Second-Generation Biofuel Production from the Marine Filter Feeder Ciona intestinalis vol.8, pp.22, 2020, https://doi.org/10.1021/acssuschemeng.0c02417
  16. CELLULOSIC BIOETHANOL PRODUCTION FROM ULVA LACTUCA MACROALGAE vol.55, pp.5, 2012, https://doi.org/10.35812/cellulosechemtechnol.2021.55.51
  17. A Cookbook for Bioethanol from Macroalgae: Review of Selecting and Combining Processes to Enhance Bioethanol Production vol.7, pp.4, 2021, https://doi.org/10.1007/s40726-021-00202-7