DOI QR코드

DOI QR Code

Amperometric cholesterol biosensor using layer-by-layer adsorption technique onto electrospun polyaniline nanofibers

  • Shin, Young Jae (Department of Electrical and Computer Engineering, Texas A&M University) ;
  • Kameoka, Jun (Department of Electrical and Computer Engineering, Texas A&M University)
  • Published : 2012.01.25

Abstract

An amperometric cholesterol biosensor was fabricated using electrospun polyaniline nanofibers. Polyaniline was dissolved in chloroform with camphorsulfonic acid, and polystyrene was added in this solution. Using this mixed solution, nanofibers were formed and collected by electrospinning. Then cholesterol oxidase was immobilized onto these fibers using an electrostatic layer-by-layer adsorption technique. Poly(diallyldimethylammonium chloride) was used as the counter ion source. The level of adsorption was examined and evidence of layer-by-layer adsorption was investigated using a quartz crystal microbalance (QCM) technique. A cholesterol biosensor was fabricated from these nanofibers as a working electrode, and it was used to measure the cholesterol concentration.

Keywords

References

  1. S.K. Arya, M. Datta, B.D. Malhora, Biosens. Bioelectron. 23 (2008) 1083. https://doi.org/10.1016/j.bios.2007.10.018
  2. C. Jianrong, M. Yuqing, H. Nongyue, W. Xiaohua, L. Sijiao, Biotechnol. Adv. 22 (2004) 505. https://doi.org/10.1016/j.biotechadv.2004.03.004
  3. R. Garjonyte, A. Malinauskas, Biosens. Bioelectron. 15 (2000) 445. https://doi.org/10.1016/S0956-5663(00)00101-9
  4. A.G. MacDiarmid, A.J. Epstein, Faraday Discuss. Chem. Soc. 88 (1989) 317. https://doi.org/10.1039/dc9898800317
  5. Y. Cao, P. Smith, A.J. Heeger, Synth. Met. 48 (1992) 91. https://doi.org/10.1016/0379-6779(92)90053-L
  6. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Anal. Chim. Acta 614 (2008) 1. https://doi.org/10.1016/j.aca.2008.02.068
  7. H. Mi, X. Zhang, S. Yang, X. Ye, J. Luo, Mater. Chem. Phys. 112 (2008) 127. https://doi.org/10.1016/j.matchemphys.2008.05.022
  8. H. Liu, J. Kameoka, D.A. Czaplewski, H.G. Craighead, Nano Lett. 4 (2004) 671. https://doi.org/10.1021/nl049826f
  9. J. Kameoka, S.S. Verbridge, H. Liu, D.A. Czaplewski, H.G. Craighead, Nano Lett. 4 (2004) 2105. https://doi.org/10.1021/nl048840p
  10. L.M. Bellan, J. Kameoka, H.G. Craighead, Nanotechnology 16 (2005) 1095. https://doi.org/10.1088/0957-4484/16/8/017
  11. D. Aussawasathien, J.H. Dong, L. Dai, Synth. Met. 154 (2005) 37. https://doi.org/10.1016/j.synthmet.2005.07.018
  12. G. Shi, Z. Sun, M. Liu, L. Zhang, Y. Liu, Y. Qu, L. Jin, Anal. Chem. 79 (2007) 3581. https://doi.org/10.1021/ac062034g
  13. M. Zaitoun, Spectroscopy 19 (2005) 119. https://doi.org/10.1155/2005/124213
  14. H.J. Kim, S.H. Yoon, H.N. Choi, Y.K. Lyn, W.Y. Lee, Bull. Korean Chem. Soc. 27 (2006) 65. https://doi.org/10.5012/bkcs.2006.27.1.065
  15. S.F. Li, J.P. Chen, W.T. Wu, J. Mol. Catal. B: Enzym. 47 (2007) 117. https://doi.org/10.1016/j.molcatb.2007.04.010
  16. J.H. Han, J.D. Taylor, D.S. Kim, Y.S. Kim, Y.T. Kim, G.S. Cha, H. Nam, Sens. Actuators B 123 (2007) 384. https://doi.org/10.1016/j.snb.2006.08.042
  17. S.D.R. Jeykumari, S.S. Narayanan, Biosens. Bioelectron. 23 (2008) 1404. https://doi.org/10.1016/j.bios.2007.12.007
  18. K.M. Manesh, H.T. Kim, P. Santhosh, A.I. Gopalan, K.P. Lee, Biosens. Bioelectron. 23 (2008) 771. https://doi.org/10.1016/j.bios.2007.08.016
  19. D. Shan, S. Wnag, Y. He, H. Xue, Mater. Sci. Eng. C 28 (2008) 213. https://doi.org/10.1016/j.msec.2006.12.003
  20. Z.M. Tahir, E.C. Alocilja, D.L. Grooms, Sensors 7 (2007) 1123. https://doi.org/10.3390/s7071123
  21. K. Han, Z. Wu, J. Lee, I.S. Ahn, J.W. Park, B.R. Min, K. Lee, Biochem. Eng. J. 22 (2005) 161. https://doi.org/10.1016/j.bej.2004.09.011
  22. G. Decher, Science 277 (1997) 1232. https://doi.org/10.1126/science.277.5330.1232
  23. Y.M. Lvov, Z. Lu, J.B. Schenkman, X. Zu, J.F. Rusling, J. Am. Chem. Soc. 120 (1998) 4073. https://doi.org/10.1021/ja9737984
  24. R. Pei, X. Cui, X. Yang, E. Wang, Biomacromolecules 2 (2001) 463. https://doi.org/10.1021/bm0001289
  25. H. Ma, N. Hu, J.F. Rusling, Langmuir 16 (2000) 4969. https://doi.org/10.1021/la991296t
  26. S. Banerjee, S.S. Wong, J. Am. Chem. Soc. 125 (2003) 10342. https://doi.org/10.1021/ja035980c
  27. Q. Gao, S.L. Suib, J.F. Rusling, Chem. Commun. 19 (2002) 2254.
  28. Q.L. Wang, G.X. Lu, B. Yang, Langmuir 20 (2004) 1342. https://doi.org/10.1021/la035321d
  29. P. He, N. Hu, J.F. Rusling, Langmuir 20 (2004) 722. https://doi.org/10.1021/la035006r
  30. J. Huang, I. Ichinose, T. Kunitake, A. Nakao, Langmuir 18 (2002) 9048. https://doi.org/10.1021/la026091q
  31. J. Yu, H. Ju, Anal. Chem. 74 (2002) 3579. https://doi.org/10.1021/ac011290k
  32. Q. Wang, G. Lu, B. Yang, Sens. Actuators B 99 (2004) 50. https://doi.org/10.1016/j.snb.2003.10.008
  33. J. Li, S.N. Tan, H. Ge, Anal. Chim. Acta 335 (1996) 137. https://doi.org/10.1016/S0003-2670(96)00337-6
  34. M.K. Ram, P. Bertoncello, H. Ding, S. Paddeu, C. Nicolini, Biosens. Bioelectron. 16 (2001) 849. https://doi.org/10.1016/S0956-5663(01)00208-1
  35. Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, J. Am. Chem. Soc. 117 (1995) 6117. https://doi.org/10.1021/ja00127a026

Cited by

  1. The evolution of selective analyses of HDL and LDL cholesterol in clinical and point of care testing vol.5, pp.15, 2013, https://doi.org/10.1039/c3ay40715b
  2. Synthesis of a Polyacetylene by Double Cyclopolymerization of Triyne Monomer and its Electro-optical and Electrochemical Properties vol.579, pp.1, 2012, https://doi.org/10.1080/15421406.2013.802961
  3. A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides vol.138, pp.5, 2012, https://doi.org/10.1039/c2an36663k
  4. Chemochromic properties of neutral polyaniline throughout cholesterol exposure vol.20, pp.2, 2012, https://doi.org/10.1007/s10965-012-0071-7
  5. A biosensor for the determination of high density lipoprotein cholesterol employing combined surfactant-derived selectivity and sensitivity enhancements vol.6, pp.12, 2012, https://doi.org/10.1039/c3ay42262c
  6. Biologically Inspired Nanofibers for Use in Translational Bioanalytical Systems vol.7, pp.None, 2014, https://doi.org/10.1146/annurev-anchem-071213-020035
  7. Synthesis of Uniform Polyaniline Nanosheets and Nanotubes: Dependence of Morphology on the pH vol.24, pp.8, 2016, https://doi.org/10.1007/s13233-016-4097-2
  8. Ultrathin electrospun PANI nanofibers for neuronal tissue engineering vol.133, pp.35, 2012, https://doi.org/10.1002/app.43885
  9. Polyaniline-modified nanocellulose prepared from Semantan bamboo by chemical polymerization: preparation and characterization vol.7, pp.41, 2012, https://doi.org/10.1039/c7ra03379f
  10. Preparation of a P(FcA-co-ANI)/graphene composite for application in supercapacitors vol.29, pp.5, 2012, https://doi.org/10.1177/0954008316652463
  11. Electrospun Chitosan-Gelatin Biopolymer Composite Nanofibers for Horseradish Peroxidase Immobilization in a Hydrogen Peroxide Biosensor vol.7, pp.4, 2012, https://doi.org/10.3390/bios7040047
  12. Aligned polyvinylpyrrolidone nanofibers with advanced electrospinning for biomedical applications vol.29, pp.5, 2012, https://doi.org/10.3233/bme-181017
  13. Optimizing the use of digital sensors (non-invasive) for early detection of risk factors for recurrent stroke to improve quality of care: A systematic review vol.8, pp.None, 2012, https://doi.org/10.12688/f1000research.17627.1
  14. Synthesis and biocompatibility assessment of polyaniline nanomaterials vol.34, pp.1, 2012, https://doi.org/10.1177/0883911518809110
  15. Nanofibers for Biomedical and Healthcare Applications vol.19, pp.2, 2012, https://doi.org/10.1002/mabi.201800256
  16. A Simple Homemade Electrospinning for Nanoscale Fibres Production vol.125, pp.None, 2012, https://doi.org/10.1051/e3sconf/201912512001
  17. Cholesterol biosensors: A review vol.143, pp.None, 2012, https://doi.org/10.1016/j.steroids.2018.12.003
  18. Development of dopamine biosensor based on polyaniline/carbon quantum dots composite vol.27, pp.7, 2012, https://doi.org/10.1007/s10965-020-02158-6
  19. Application of blocking and immobilization of electrospun fiber in the biomedical field vol.10, pp.61, 2012, https://doi.org/10.1039/d0ra06865a
  20. Electrospun Nanofibers as Effective Superhydrophobic Surfaces: A Brief review vol.24, pp.None, 2021, https://doi.org/10.1016/j.surfin.2021.101140
  21. Fabrication of Cellulase Catalysts Immobilized on a Nanoscale Hybrid Polyaniline/Cationic Hydrogel Support for the Highly Efficient Catalytic Conversion of Cellulose vol.13, pp.42, 2012, https://doi.org/10.1021/acsami.1c12263
  22. Nanofibers interfaces for biosensing: Design and applications vol.3, pp.None, 2021, https://doi.org/10.1016/j.snr.2021.100048