DOI QR코드

DOI QR Code

Eggshell and coral wastes as low cost sorbents for the removal of $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ from aqueous solutions

  • Ahmad, Mahtab (Department of Biological Environment, Kangwon National University) ;
  • Usman, Adel R.A. (Department of Biological Environment, Kangwon National University) ;
  • Lee, Sang Soo (Department of Biological Environment, Kangwon National University) ;
  • Kim, Sung-Chul (Department of Biological Environment, Kangwon National University) ;
  • Joo, Jin-Ho (Department of Biological Environment, Kangwon National University) ;
  • Yang, Jae E. (Department of Biological Environment, Kangwon National University) ;
  • Ok, Yong Sik (Department of Biological Environment, Kangwon National University)
  • Published : 2012.01.25

Abstract

Rapid industrialization in Korea has led to the discharge of heavy metals to water, posing a threat to the environment. The use of natural materials as low cost sorbents for the removal of heavy metals from aqueous solutions has recently received increasing attention. The present study was conducted to evaluate the effectiveness of eggshell and coral wastes for the removal of $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ from aqueous solutions. Batch equilibrium experiments were conducted using heavy metal solutions with waste eggshell and coral powders. Langmuir and Freundlich adsorption models were used for the mathematical description of sorption equilibrium. The maximum amounts of metals ($Cu^{2+}$, $Pb^{2+}$ and $Cd^{2+}$) adsorbed were found to be 32.3, 22.9 and 4.47 mmol $kg^{-1}$ for eggshell and 6.77, 5.52 and 1.03 mmol $kg^{-1}$ for coral wastes, respectively. At low initial concentrations the adsorption of heavy metals onto both sorbents can be described as H-type (except for the Cd adsorption onto coral), indicating high-affinity isotherms and strong adsorbate-adsorptive interactions such as inner sphere complexes. However, the metal adsorption was described by L-type isotherm at high initial concentrations. Based on the distribution coefficient ($K_d$) values and the percentage of metal removed, the selectivity sequence in eggshells and coral wastes was found to be $Pb^{2+}$ > $Cu^{2+}$ > $Cd^{2+}$. The $K_d$ values and the percentage of metals removed were higher in eggshells than coral with its higher capacity to adsorb heavy metals. Based on the results of the present study, eggshell and coral wastes can be used for the removal of heavy metals from aqueous solutions.

Keywords

References

  1. J.E. Yang, J.S. Kim, Y.S. Ok, K.R. Yoo, Korean J. Chem. Eng. 23 (2006) 935. https://doi.org/10.1007/s11814-006-0011-5
  2. J. Jung, H.J. Jo, S.M. Lee, Y.S. Ok, J.G. Kim, J. Radioanal. Nucl. Chem. 262 (2004) 371. https://doi.org/10.1023/B:JRNC.0000046765.08734.88
  3. O.D. Uluozlu, A. Sari, M. Tuzem, M. Soylak, Bioresour. Technol. 99 (2008) 2972. https://doi.org/10.1016/j.biortech.2007.06.052
  4. S. Senthilkumaar, S. Bharathi, D. Nithyanandhi, V. Subburam, Bioresour. Technol. 75 (2000) 163. https://doi.org/10.1016/S0960-8524(00)00021-3
  5. B. Pan, B. Pan, X. Chen, W. Zhang, X. Zhang, Q. Zhang, Q. Zhang, J. Chen, Water Res. 40 (2006) 2938. https://doi.org/10.1016/j.watres.2006.05.028
  6. J.E. Yang, J.G. Skousen, Y.S. Ok, K.R. Yoo, H.J. Kim, Mine Water Environ. 25 (2006) 227. https://doi.org/10.1007/s10230-006-0137-z
  7. J.E. Yang, J.S. Kim, Y.S. Ok, K.R. Yoo, Water Sci. Technol. 55 (2007) 197.
  8. S.S. Ahluwalia, D. Goyal, Bioresour. Technol. 98 (2007) 2243. https://doi.org/10.1016/j.biortech.2005.12.006
  9. Y.S. Ok, J.E. Yang, Y.S. Zhang, S.J. Kim, D.Y. Chung, J. Hazard. Mater. 147 (2007) 91. https://doi.org/10.1016/j.jhazmat.2006.12.046
  10. A. Ozer, D. Ozer, J. Hazard. Mater. B100 (2003) 219.
  11. A. Cabuk, T. Akar, S. Tunali, S. Gedikli, Chem. Eng. J. 131 (2007) 293. https://doi.org/10.1016/j.cej.2006.12.011
  12. J. Wang, C. Chen, Biotechnol. Adv. 24 (2006) 427. https://doi.org/10.1016/j.biotechadv.2006.03.001
  13. R. Gargarello, S. Cavalitto, D. Gregorio, J.F. Niello, H. Huck, A. Pardo, H. Somacal, G. Curutchet, Environ. Technol. 29 (2008) 1341. https://doi.org/10.1080/09593330802327069
  14. J. Kadukova, E. Vircikova, Environ. Int. 31 (2005) 227. https://doi.org/10.1016/j.envint.2004.09.020
  15. K. Mohanty, M. Jha, B.C. Meikap, M.N. Biswas, Chem. Eng. J. 117 (2006) 71. https://doi.org/10.1016/j.cej.2005.11.018
  16. S. Ahmady-Asbchin, Y. Andres, C. Gerente, P.L. Cloirec, Environ. Technol. 30 (2009) 755. https://doi.org/10.1080/09593330902919401
  17. K. Chojnacka, A. Chojnacki, H. Gorecka, Chemosphere 59 (2005) 75. https://doi.org/10.1016/j.chemosphere.2004.10.005
  18. F. Veglio, F. Beolchini, Hydrometallurgy 44 (1997) 301. https://doi.org/10.1016/S0304-386X(96)00059-X
  19. A. Kapoor, T. Viraraghavan, Bioresour. Technol. 53 (1995) 195.
  20. MIFAFF, The statistics for consumption of major livestock products. Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea. (2006) , (accessed on 15.12.09).
  21. Y.S. Ok, S.E. Oh, M. Ahmad, S. Hyun, K.R. Kim, D.H. Moon, S.S. Lee, J. Lim, W.T. Jeon, J.E. Yang, Environ. Earth Sci. 61 (2010) 1301. https://doi.org/10.1007/s12665-010-0674-4
  22. B.W. Halstead, Fossil Stony Coral Minerals and their Nutritional Application, Health Digest Publishing Company, 1999.
  23. Y.S. Ok, J.E. Lim, D.H. Moon, Environ. Geochem. Health 33 (2011) 83. https://doi.org/10.1007/s10653-010-9329-3
  24. Y.S. Ok, S.S. Lee, W.T. Jeon, S.E. Oh, A.R.A. Usman, D.H. Moon, Environ. Geochem. Health 33 (2011) 31. https://doi.org/10.1007/s10653-010-9362-2
  25. H.J. Park, S.W. Jeong, J.K. Yang, B.G. Kim, S.M. Lee, J. Environ. Sci. 19 (2007) 1436. https://doi.org/10.1016/S1001-0742(07)60234-4
  26. C. Arunlertaree, W. Kaewsomboon, A. Kumsopa, P. Pokethitiyook, P. Panyawathanakit, J. Sci. Technol. 29 (2007) 857.
  27. B. Kaczorowska, A. Hacura, T. Kupka, R. Wrzalik, E. Talik, G. Pasterny, A. Matuszewska, Anal. Bioanal. Chem. 377 (2003) 1032. https://doi.org/10.1007/s00216-003-2153-1
  28. O. Tunusoglu, T. Shahwan, A.E. Eroglu, Geochem. J. 41 (2007) 379. https://doi.org/10.2343/geochemj.41.379
  29. M. Zargaran, A.M. Shoushtari, M. Abdouss, J. Appl. Polym. Sci. 118 (2010) 135. https://doi.org/10.1002/app.32337
  30. J.J. Msaky, R. Calvet, Soil Sci. 150 (1990) 513. https://doi.org/10.1097/00010694-199008000-00004
  31. D.L. Sparks, Environmental Soil Chemistry, Academic press, New York, 2003.
  32. P.A. Brown, S.A. Gill, S.J. Allen, Water Res. 34 (2000) 3907. https://doi.org/10.1016/S0043-1354(00)00152-4
  33. L.H. Wang, C.I. Lin, J. Tai. Inst. Chem. Eng. 41 (2010) 585. https://doi.org/10.1016/j.jtice.2010.01.005
  34. M.O. Corapcioglu, C.P. Huang, Water Res. 21 (1987) 1031. https://doi.org/10.1016/0043-1354(87)90024-8
  35. K.K. Panday, G. Prasad, V.N. Singh, Water Res. 19 (1985) 869. https://doi.org/10.1016/0043-1354(85)90145-9
  36. U.K. Saha, S. Taniguchi, K. Sakurai, Soil Sci. Soc. Am. J. 66 (2002) 117. https://doi.org/10.2136/sssaj2002.0117
  37. A.R.A. Usman, Geoderma 144 (2008) 334. https://doi.org/10.1016/j.geoderma.2007.12.004
  38. B.J. Alloway, in: B.J. Alloway (Ed.), Heavy Metals in Soils, Blackie Academic & Professional, London, 1995, p. 11.
  39. P.R. Anderson, T.H. Christensen, J. Soil Sci. 39 (1988) 15. https://doi.org/10.1111/j.1365-2389.1988.tb01190.x
  40. P.C. Gomes, M.P.F. Fontes, A.G. daSilva, E.S. Mendonca, R.A. Netto, Soil Sci. Soc. Am. J. 65 (2001) 1115. https://doi.org/10.2136/sssaj2001.6541115x
  41. N.T. Basta, M.A. Tabatabai, Soil Sci. 153 (1992) 331. https://doi.org/10.1097/00010694-199204000-00010
  42. S. Gao, W.J. Walker, R.A. Dahlgren, J. Bold, Water Air Soil Pollut. 93 (1997) 331.
  43. S. Milonjic, J. Serb. Chem. Soc. 72 (2007) 1363. https://doi.org/10.2298/JSC0712363M
  44. H.A. Aziz, M.N. Adlan, K.S. Ariffin, Bioresour. Technol. 99 (2008) 1578. https://doi.org/10.1016/j.biortech.2007.04.007

Cited by

  1. Effects of Natural and Calcined Oyster Shells on Antimony Solubility in Shooting Range Soil vol.56, pp.4, 2012, https://doi.org/10.1007/s13765-012-3188-9
  2. Efficacy of rapeseed residue and eggshell waste on enzyme activity and soil quality in rice paddy vol.29, pp.6, 2012, https://doi.org/10.1080/02757540.2013.810725
  3. Adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solution by unmodifiedStrychnos potatorumseeds vol.17, pp.4, 2012, https://doi.org/10.1080/19648189.2013.785983
  4. Kinetic, Equilibrium and Thermodynamic Studies on the Adsorption of Eu(III) by Eggshell from Aqueous Solutions vol.31, pp.10, 2012, https://doi.org/10.1260/0263-6174.31.10.891
  5. Chemically Modified Biochar Produced from Conocarpus Wastes: An Efficient Sorbent for Fe(II) Removal from Acidic Aqueous Solutions vol.31, pp.7, 2013, https://doi.org/10.1260/0263-6174.31.7.625
  6. Linde Type a Zeolite and Type Y Faujasite as a Solid-Phase for Lead, Cadmium, Nickel and Cobalt Preconcentration and Determination Using a Flow Injection System Coupled to Flame Atomic Absorption Spec vol.4, pp.8, 2013, https://doi.org/10.4236/ajac.2013.48049
  7. Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste vol.20, pp.7, 2012, https://doi.org/10.1007/s11356-012-1409-8
  8. Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes vol.20, pp.12, 2012, https://doi.org/10.1007/s11356-013-1676-z
  9. Biological removal of heavy metal zinc from industrial effluent by Zinc sequestering bacterium VMSDCM vol.16, pp.3, 2012, https://doi.org/10.1007/s10098-013-0655-x
  10. Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.) vol.71, pp.4, 2012, https://doi.org/10.1007/s12665-013-2570-1
  11. Optimization of Cr(VI) removal onto biosorbent eggshell membrane: experimental & theoretical approaches vol.52, pp.7, 2012, https://doi.org/10.1080/19443994.2013.787374
  12. Utilization of low-cost sorbent for removal and separation of 134Cs, 60Co and 152+154Eu radionuclides from aqueous solution vol.302, pp.1, 2012, https://doi.org/10.1007/s10967-014-3185-z
  13. Selective recovery of dissolved Fe, Al, Cu, and Zn in acid mine drainage based on modeling to predict precipitation pH vol.22, pp.4, 2015, https://doi.org/10.1007/s11356-014-3536-x
  14. Separation of chromium from water samples using eggshell powder as a low-cost sorbent: kinetic and thermodynamic studies vol.53, pp.1, 2012, https://doi.org/10.1080/19443994.2013.837011
  15. 계분 바이오차를 이용한 토양 중금속 안정화 효율 평가 vol.58, pp.1, 2015, https://doi.org/10.3839/jabc.2015.008
  16. Heavy Metal Bioaccumulation in Native Plants in Chromite Impacted Sites: A Search for Effective Remediating Plant Species vol.44, pp.1, 2012, https://doi.org/10.1002/clen.201400605
  17. New trends in removing heavy metals from wastewater vol.100, pp.15, 2012, https://doi.org/10.1007/s00253-016-7646-x
  18. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars vol.23, pp.3, 2012, https://doi.org/10.1007/s11356-015-5486-3
  19. Application of Terminalia arjuna as potential adsorbent for the removal of Pb(II) from aqueous solution: thermodynamics, kinetics and process design vol.57, pp.38, 2012, https://doi.org/10.1080/19443994.2015.1087878
  20. Preparation and evaluation of hydrogel composites based on starch-g-PNaMA/eggshell particles as dye biosorbent vol.57, pp.39, 2016, https://doi.org/10.1080/19443994.2015.1087344
  21. Impact of natural and calcined starfish (Asterina pectinifera) on the stabilization of Pb, Zn and As in contaminated agricultural soil vol.39, pp.2, 2012, https://doi.org/10.1007/s10653-016-9867-4
  22. Behavior of high-energy-milling-activated eggshells during thermal treatment vol.127, pp.1, 2012, https://doi.org/10.1007/s10973-016-5710-5
  23. A Dialogue on Perspectives of Biochar Applications and Its Environmental Risks vol.228, pp.8, 2012, https://doi.org/10.1007/s11270-017-3428-z
  24. Evaluating Cu(II) Removal From Aqueous Solutions with Response Surface Methodology by Using Novel Synthesized CaCO3 Nanoparticles Prepared in a Colloidal Gas Aphron System vol.204, pp.4, 2017, https://doi.org/10.1080/00986445.2016.1277522
  25. Poly(HEMA-co-AA) microparticles for removal of aluminum: The reason for Alzheimer's vol.54, pp.3, 2017, https://doi.org/10.1080/10601325.2017.1265400
  26. Phytic Acid Doped Polyaniline Nanofibers for Enhanced Aqueous Copper(II) Adsorption Capability vol.5, pp.8, 2017, https://doi.org/10.1021/acssuschemeng.7b00898
  27. Vanadium(V) removal from aqueous solutions using a new composite adsorbent (BAZLSC): Optimization by response surface methodology vol.6, pp.3, 2012, https://doi.org/10.12989/aer.2017.6.3.173
  28. 녹차잎과 인삼잎의 중금속 흡착능 평가 연구 vol.22, pp.5, 2012, https://doi.org/10.7857/jsge.2017.22.5.128
  29. Biosorption of strontium ions from aqueous solution using modified eggshell materials vol.105, pp.12, 2012, https://doi.org/10.1515/ract-2016-2729
  30. Water Treatment Residuals as a Resource for the Recovery of Soil and Water Polluted with Sb(V): Sorption and Desorption Trials at Different pH Values vol.229, pp.6, 2012, https://doi.org/10.1007/s11270-018-3830-1
  31. Biochar composites with nano zerovalent iron and eggshell powder for nitrate removal from aqueous solution with coexisting chloride ions vol.25, pp.26, 2018, https://doi.org/10.1007/s11356-017-0125-9
  32. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts vol.25, pp.8, 2012, https://doi.org/10.1007/s11356-017-1166-9
  33. An efficient phosphorus scavenging from aqueous solution using magnesiothermally modified bio-calcite vol.39, pp.13, 2012, https://doi.org/10.1080/09593330.2017.1335349
  34. Highly Efficient and Rapid Lead(II) Scavenging by the Natural Artemia Cyst Shell with Unique Three-Dimensional Porous Structure and Strong Sorption Affinity vol.6, pp.1, 2012, https://doi.org/10.1021/acssuschemeng.7b03667
  35. Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution vol.28, pp.6, 2012, https://doi.org/10.1016/j.serj.2018.09.002
  36. Enhanced phenanthrene removal in aqueous solution using modified biochar supported nano zero-valent iron vol.40, pp.23, 2012, https://doi.org/10.1080/09593330.2018.1549104
  37. Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment vol.26, pp.7, 2012, https://doi.org/10.1007/s11356-018-04108-8
  38. Preparation of pickling-reheating activated alfalfa biochar with high adsorption efficiency for p-nitrophenol: characterization, adsorption behavior, and mechanism vol.26, pp.15, 2012, https://doi.org/10.1007/s11356-019-04862-3
  39. Assessment of the adsorption kinetics, equilibrium and thermodynamic for Pb(II) removal using a hybrid adsorbent, eggshell and sericite, in aqueous solution vol.79, pp.10, 2012, https://doi.org/10.2166/wst.2019.191
  40. Effects of Co-occurring Species Present in Swine Lagoons on Adsorption of Copper on Eggshell vol.13, pp.4, 2019, https://doi.org/10.1007/s41742-019-00203-x
  41. Assessment of the adsorption kinetics, equilibrium, and thermodynamic for Pb(II) removal using a low‐cost hybrid biowaste adsorbent, eggshell/coffee ground/sericite vol.91, pp.12, 2019, https://doi.org/10.1002/wer.1158
  42. Effect of Modified Eggshell on Adsorption Capacity of Chromium(VI) from Aqueous Solution vol.32, pp.7, 2020, https://doi.org/10.14233/ajchem.2020.22651
  43. Application of algae as low cost and effective bio-adsorbent for removal of heavy metals from wastewater: a review study vol.9, pp.1, 2020, https://doi.org/10.1080/21622515.2020.1831619
  44. Characterization of nano calcium powder from blood cockle (Anadara sp.) shell produced by using different hydrochloric acid concentration vol.441, pp.None, 2012, https://doi.org/10.1088/1755-1315/441/1/012142
  45. Ni(II) Adsorption on Biochars Produced from Different Types of Biomass vol.231, pp.5, 2012, https://doi.org/10.1007/s11270-020-04591-1
  46. Sustainable Process for the Extraction of Potassium from Feldspar Using Eggshell Powder vol.5, pp.25, 2012, https://doi.org/10.1021/acsomega.0c00586
  47. Efficient Removal of Heavy Metals from Aqueous Solutions Using a Bionanocomposite of Eggshell/Ag-Fe vol.10, pp.7, 2012, https://doi.org/10.3390/catal10070727
  48. Mechanistic Study of Pb2+ Removal from Aqueous Solutions Using Eggshells vol.12, pp.9, 2012, https://doi.org/10.3390/w12092517
  49. Bio-adsorbent preparation based on Chinese Radix isatidis residue for Pb(II) removal vol.15, pp.4, 2012, https://doi.org/10.2166/wpt.2020.091
  50. Application of Waste Egg Shell for Adsorption of Cd(II) and Pb(II) Ions to Protect Environment: Equilibrium, Kinetic and Adsorption Studies vol.37, pp.1, 2012, https://doi.org/10.13005/ojc/370117
  51. Recent Trends in Sustainable Remediation of Pb-Contaminated Shooting Range Soils: Rethinking Waste Management within a Circular Economy vol.9, pp.4, 2012, https://doi.org/10.3390/pr9040572
  52. Eggshell as a biomaterial can have a sorption capability on its surface: A spectroscopic research vol.8, pp.6, 2012, https://doi.org/10.1098/rsos.210100
  53. Study of mayenite produced from waste eggshell as support for Ni-Co catalysts for biomass tar cracking vol.176, pp.None, 2012, https://doi.org/10.1016/j.cherd.2021.09.034
  54. Simple recycling of biowaste eggshells to various calcium phosphates for specific industries vol.11, pp.1, 2012, https://doi.org/10.1038/s41598-021-94643-1
  55. Fabrication, Characterization, and Evaluation of Eggshells as a Carrier for Sustainable Slow-Release Multi-Nutrient Fertilizers vol.4, pp.12, 2012, https://doi.org/10.1021/acsabm.1c00733