DOI QR코드

DOI QR Code

Electrohydrodynamic instabilities of polymer thin films: Filler effect

  • Bae, Joonwon (Samsung Advanced Institute of Technology, Samsung Electronics)
  • Published : 2012.01.25

Abstract

The influence of various nanoparticles with different dimension, density, dielectric constant, and surface property on electrohydrodynamic (EHD) instabilities of polymer/nanoparticle nanocomposite thin films was examined as a function of nanoparticle concentration. Transmission electron microscopy (TEM) images of polystyrene (PS)/nanoparticles (NPs) thin films demonstrated that all the nanoparticles were uniformly distributed in polymer matrix and the homogeneous dispersions of nanoparticles were not affected by thermal annealing above glass transition temperature. Optical microscopy (OM) observations indicated that thin films of polystyrene containing silica ($SiO_2$), gold (Au), cadmium selenide (CdSe), and titania ($TiO_2$) nanoparticles showed electrohydrodynamic instability patterns similar to those seen in pure polystyrene, up to 3 vol% nanoparticles. The presence of nanoparticles changed the dielectric constant of the thin films, which led to systematic variations in the wavelengths of the surface instabilities, which were consistent with calculated values. Cross-sectional transmission electron microscopy (TEM) images showed that migration or aggregation of the nanoparticles occurred only for silica contrary to other nanoparticles. This work points to a simple route to reduce the scale of final well-ordered columnar structures.

Keywords

References

  1. J.W. Swan, Proc. R. Soc. Lond. 62 (1897) 38. https://doi.org/10.1098/rspl.1897.0077
  2. N. Wu, L.F. Pease III, W.B. Russel, Adv. Funct. Mater. 16 (2006) (1992). https://doi.org/10.1002/adfm.200600092
  3. S. Harkema, U. Steiner, Adv. Funct. Mater. 15 (2005) 2016. https://doi.org/10.1002/adfm.200500388
  4. R. Verma, A. Sharma, K. Kargupta, J. Bhaumik, Langmuir 21 (2005) 3710. https://doi.org/10.1021/la0472100
  5. A.K. Leach, S. Gupta, M.D. Dickey, C.G. Wilson, T.P. Russell, Chaos 15 (2005) 047506. https://doi.org/10.1063/1.2132248
  6. A. Vrij, Discuss. Faraday Soc. 42 (1966) 23. https://doi.org/10.1039/df9664200023
  7. M.B. Williams, S.H. Davis, J. Colloid Interface Sci. 90 (1982) 220. https://doi.org/10.1016/0021-9797(82)90415-5
  8. A. Sharma, E. Ruckenstein, Langmuir 2 (1986) 480. https://doi.org/10.1021/la00070a019
  9. F. Brochard-Wyart, J. Daillant, Can. J. Phys. 68 (1991) 1984.
  10. G. Reiter, Phys. Rev. Lett. 68 (1992) 75. https://doi.org/10.1103/PhysRevLett.68.75
  11. R. Yerushalmi-Rosen, J. Klein, L. Fetters, Science 263 (1994) 793. https://doi.org/10.1126/science.263.5148.793
  12. A. Onuki, Physica A 217 (1995) 38. https://doi.org/10.1016/0378-4371(94)00024-N
  13. A. Sharma, R. Khanna, Phys. Rev. Lett. 81 (1998) 3463. https://doi.org/10.1103/PhysRevLett.81.3463
  14. M. Boltau, S. Walheim, J. Mlynek, G. Krausch, U. Steiner, Nature 391 (1998) 877. https://doi.org/10.1038/36075
  15. M. Sferrazza, M. Heppenstall-Butler, R. Cubitt, D. Bucknall, J. Webster, R.A. Jones, Phys. Rev. Lett. 81 (1998) 5173. https://doi.org/10.1103/PhysRevLett.81.5173
  16. R. Xie, A. Karim, J.F. Douglas, C.C. Han, R.A. Weiss, Phys. Rev. Lett. 81 (1998) 1251. https://doi.org/10.1103/PhysRevLett.81.1251
  17. S.Y. Chou, L. Zhuang, L. Guo, Appl. Phys. Lett. 75 (1999) 1004. https://doi.org/10.1063/1.124579
  18. H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283 (1999) 46. https://doi.org/10.1126/science.283.5398.46
  19. A. Oron, Phys. Rev. Lett. 85 (2000) 2108. https://doi.org/10.1103/PhysRevLett.85.2108
  20. G. Reiter, R. Khanna, A. Sharma, Phys. Rev. Lett. 85 (2000) 1432. https://doi.org/10.1103/PhysRevLett.85.1432
  21. U. Thiele, M.G. Velarde, K. Neuffer, Phys. Rev. Lett. 87 (2001) 016104. https://doi.org/10.1103/PhysRevLett.87.016104
  22. M.R.E. Warner, R.V. Craster, O.K. Matar, J. Colloid Interface Sci. 268 (2003) 448. https://doi.org/10.1016/j.jcis.2003.08.013
  23. L.F. Pease III, W.B. Russel, J. Chem. Phys. 118 (2003) 2790.
  24. J.Y. Kim, Y.H. Park, J.S. Kim, K.T. Lim, Y.T. Jeong, J. Ind. Eng. Chem. 13 (2007) 1023.
  25. E. Schaeffer, T. Thurn-Albrechet, T.P. Russell, U. Steiner, Nature 403 (2000) 874. https://doi.org/10.1038/35002540
  26. M.D. Morariu, N.E. Voivu, E. Schaeffer, Z. Lin, T.P. Russell, Nat. Mater. 2 (2003) 48. https://doi.org/10.1038/nmat789
  27. Z. Lin, T. Kerle, T.P. Russell, Macromolecules 35 (2002) 6255. https://doi.org/10.1021/ma020311p
  28. Z. Lin, T. Kerle, T.P. Russell, E. Schaeffer, U. Steiner, Macromolecules 35 (2002) 3971. https://doi.org/10.1021/ma0122425
  29. T. Xu, C.J. Hawker, T.P. Russell, Macromolecules 36 (2003) 6178. https://doi.org/10.1021/ma034511s
  30. H. Xiang, Y. Lin, T.P. Russell, Macromolecules 37 (2004) 5358. https://doi.org/10.1021/ma049888s
  31. A.K. Leach, Z. Lin, T.P. Russell, Macromolecules 38 (2005) 4868. https://doi.org/10.1021/ma048157p
  32. J.Y. Kim, Y.H. Park, J.S. Kim, K.T. Lim, M. Yang, Y.T. Jeong, J. Ind. Eng. Chem. 13 (2007) 781.
  33. A.C. Balazs, T. Emrick, T.P. Russell, Science 580 (2006) 1107.
  34. J.Y. Kim, H.M. Koo, K.J. Ihn, K.D. Suh, J. Ind. Eng. Chem. 15 (2009) 103. https://doi.org/10.1016/j.jiec.2008.08.005
  35. J.W. Bae, E. Glogowski, S. Gupta, W. Chen, T. Emrick, T.P. Russell, Macromolecules 41 (2008) 2722. https://doi.org/10.1021/ma702750y
  36. C. Ma, Z.L. Wang, Adv. Mater. 17 (2005) 1.
  37. J.J. Chiu, B.J. Kim, E.J. Kramer, D.J. Pine, J. Am. Chem. Soc. 127 (2005) 5036. https://doi.org/10.1021/ja050376i
  38. M. Brust, M. Walker, D. Betell, D.J. Schiffrin, R.J. Whyman, J. Chem. Soc. Chem. Commun. (1994) 801.
  39. Z. Lin, T. Kerle, S.M. Baker, D.A. Hoagland, E. Schaeffer, U. Steiner, T.P. Russell, J. Chem. Phys. 114 (2001) 2377. https://doi.org/10.1063/1.1338125
  40. K.A. Smith, S. Tyagi, A.C. Balazs, Macromolecules 38 (2005) 10138. https://doi.org/10.1021/ma0515127
  41. J.Y. Lee, A.C. Balazs, R.B. Thompson, R.M. Hill, Macromolecules 37 (2004) 3536. https://doi.org/10.1021/ma035542q
  42. S. Gupta, Q. Zhang, T. Emrick, A.C. Balazs, T.P. Russell, Nat. Mater. 5 (2005) 229.

Cited by

  1. Fractal Patterning of Nanoparticles on Polymer Films and Their SERS Capabilities vol.5, pp.17, 2012, https://doi.org/10.1021/am402285e
  2. 타이타니아 나노막대가 포함된 블록 공중합체 박막 표면의 전기장하에서의 불안정성 거동 연구 vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1017
  3. 공중합체/나노입자 복합체 박막 내 미세구조의 전기장 하에서의 거동 vol.28, pp.3, 2012, https://doi.org/10.14478/ace.2017.1010
  4. 전기장 하에서의 블록 공중합체와 고분자 블렌드의 미세 구조 변화 거동 비교 vol.29, pp.4, 2012, https://doi.org/10.14478/ace.2018.1014
  5. Facile Fabrication of a Flexible Patterned Film with Diverse Micro-/Nanostructures via Electrohydrodynamic Patterning vol.60, pp.1, 2021, https://doi.org/10.1021/acs.iecr.0c04908