DOI QR코드

DOI QR Code

$TiO_2$ nanoparticles and nanofibres from $TiCl_4$ flocculated sludge: Characterisation and photocatalytic activity

  • Saliby, Ibrahim El (School of Civil and Environmental Engineering, University of Technology) ;
  • Okour, Yousef (School of Civil and Environmental Engineering, University of Technology) ;
  • Shon, Ho Kyong (School of Civil and Environmental Engineering, University of Technology) ;
  • Kandasamy, Jaya (School of Civil and Environmental Engineering, University of Technology) ;
  • Lee, Woong Eui (Kwang Ju Women’s University) ;
  • Kim, Jong-Ho (School of Applied Chemical Engineering, Chonnam National University)
  • Published : 2012.05.25

Abstract

In this study, dye and secondary effluent wastewaters were used to generate a non-hazardous sludge. Anatase $TiO_{2}$ nanoparticles have been successfully synthesised from the calcination of the $TiCl_{4}$ flocculated sludge. A conventional hydrothermal method was adopted to produce anatase nanofibres (calcined at $600^{\circ}C$) from $TiO_{2}$ nanoparticles. X-ray diffraction, scanning electron microscopy and transmission electron microscopy investigations showed the highly crystalline nanoparticles and nanofibres after calcination. The size of nanofibres was related to the size of their nanoparticles precursors. Nanoparticles had larger surface area than nanofibres, lower pore volume and bigger pore diameter. Energy dispersive X-ray analysis revealed that impurities can be successfully removed by a subsequent hydrothermal/acid wash of nanoparticles. Nanoparticles had better overall photocatalytic activity for the degradation of organics in synthetic wastewater compared to nanofibres. On the other hand, nanofibres had a better adsorption capacity.

Keywords

References

  1. H.K. Shon, S. Vigneswaran, I.S. Kim, J. Cho, G.-J. Kim, J.B. Kim, J.-H. Kim, Environ. Sci. Technol. 41 (2007) 1372. https://doi.org/10.1021/es062062g
  2. I. El Saliby, Y. Okour, H.K. Shon, S. Vigneswaran, J. Kandasamy, J.-H. Kim, J. Adv. Oxid. Technol. 12 (2009) 194.
  3. I. El Saliby, H.K. Shon, Y.H. Okour, S. Vigneswaran, M. Senthilnanthanan, J. Kandasamy, J. Adv. Oxid. Technol. 13 (2010) 15.
  4. Y. Okour, H.K. Shon, I. El Saliby, R. Naidu, J.B. Kim, J.-H. Kim, Bioresour. Technol. 101 (2010) 1453. https://doi.org/10.1016/j.biortech.2009.06.096
  5. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14 (1998) 3160. https://doi.org/10.1021/la9713816
  6. C.-C. Tsai, H. Teng, Chem. Mater. 18 (2005) 367.
  7. Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang, L.D. Zhang, Chem. Phys. Lett. 365 (2002) 300. https://doi.org/10.1016/S0009-2614(02)01499-9
  8. D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, Chem. Mater. 18 (2005) 547.
  9. H. Zhu, X. Gao, Y. Lan, D. Song, Y. Xi, J. Zhao, J. Am. Chem. Soc. 126 (2004) 8380. https://doi.org/10.1021/ja048204t
  10. Z.-Y. Yuan, B.-L. Su, Colloids Surf. A 241 (2004) 173. https://doi.org/10.1016/j.colsurfa.2004.04.030
  11. Y. Yu, D. Xu, Appl. Catal. B: Environ. 73 (2007) 166. https://doi.org/10.1016/j.apcatb.2006.07.017
  12. J. Yu, H. Yu, B. Cheng, X. Zhao, Q. Zhang, J. Photochem. Photobiol. A 182 (2006) 121. https://doi.org/10.1016/j.jphotochem.2006.01.022
  13. M. Qamar, C.R. Yoon, H.J. Oh, N.H. Lee, K. Park, D.H. Kim, K.S. Lee, W.J. Lee, S.J. Kim, Catal. Today 131 (2008) 3. https://doi.org/10.1016/j.cattod.2007.10.015
  14. H.-H. Ou, S.-L. Lo, Sep. Purif. Technol. 58 (2007) 179. https://doi.org/10.1016/j.seppur.2007.07.017
  15. M. Inagaki, N. Kondo, R. Nonaka, E. Ito, M. Toyoda, K. Sogabe, T. Tsumura, J. Hazard. Mater. 161 (2009) 1514. https://doi.org/10.1016/j.jhazmat.2008.05.003
  16. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Adv. Mater. 18 (2006) 2807. https://doi.org/10.1002/adma.200502696
  17. M.N. Chong, B. Jin, H.Y. Zhu, C.W.K. Chow, C. Saint, Chem. Eng. J. 150 (2009) 49.
  18. S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, Prog. Mater. Sci. 52 (2007) 699. https://doi.org/10.1016/j.pmatsci.2006.08.001
  19. D. Yang, Z. Zheng, H. Liu, H. Zhu, X. Ke, Y. Xu, D. Wu, Y. Sun, J. Phys. Chem. C 112 (2008) 16275. https://doi.org/10.1021/jp803826g
  20. S. Pavasupree, Y. Suzuki, S. Yoshikawa, R. Kawahata, J. Solid State Chem. 178 (2005) 3110. https://doi.org/10.1016/j.jssc.2005.07.022
  21. Y. Suzuki, S. Pavasupree, S. Yoshikawa, R. Kawahata, Phys. Status Solidi A 204 (2007) 1757. https://doi.org/10.1002/pssa.200675312
  22. G.T. Seo, S. Ohgaki, Y. Suzuki, Water Sci. Technol. 35 (1997) 163.
  23. Joint Committee on Powder Diffraction Standards. Powder Diffraction File, Card No. 21-1272. Swarthmore, PA.
  24. N. Corin, P. Backlund, M. Kulovaara, Chemosphere 33 (1996) 245. https://doi.org/10.1016/0045-6535(96)00167-1
  25. C.S. Uyguner, M. Bekbolet, Catal. Today 101 (2005) 267. https://doi.org/10.1016/j.cattod.2005.03.011

Cited by

  1. Morphology-Controlled Synthesis and Applications of Silver Halide Photocatalytic Materials vol.16, pp.4, 2012, https://doi.org/10.1007/s10563-012-9145-0
  2. New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue vol.28, pp.8, 2017, https://doi.org/10.1007/s10854-016-6268-5
  3. Degradation of ortho-toluidine from aqueous solution by the TiO2/O3 process vol.8, pp.1, 2012, https://doi.org/10.1007/s40090-016-0110-z
  4. Application of Heterogeneous Catalytic Ozonation for Refractory Organics in Wastewater vol.9, pp.3, 2012, https://doi.org/10.3390/catal9030241
  5. Non‐Fluorinated Polymer Composite Proton Exchange Membranes for Fuel Cell Applications – A Review vol.20, pp.16, 2012, https://doi.org/10.1002/cphc.201900191
  6. Preparation and Characterization of Photoactive Anatase TiO2 from Algae Bloomed Surface Water vol.10, pp.4, 2012, https://doi.org/10.3390/catal10040452
  7. Modified Hydrothermal Route for Synthesis of Photoactive Anatase TiO2/g-CN Nanotubes from Sludge Generated TiO2 vol.10, pp.11, 2020, https://doi.org/10.3390/catal10111350
  8. Synthesis and NOx removal performance of anatase S–TiO2/g-CN heterojunction formed from dye wastewater sludge vol.275, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.130020
  9. Preparation of effective lithium-ion sieve from sludge-generated TiO2 vol.525, pp.None, 2012, https://doi.org/10.1016/j.desal.2021.115491