DOI QR코드

DOI QR Code

Synthesis and characterization of bis(2,2-dinitropropyl ethylene) formal plasticizer for energetic binders

  • Published : 2012.05.25

Abstract

A novel gem-dinitro bis(2,2-dinitropropyl ethylene) formal (BDNPEF) was synthesized and its potential application to plasticize energetic binders was investigated. BDNPEF was synthesized from aldol condensation of formaldehyde with 2,2-dinitropropanol (DNP-OH) and ethylene glycol (EG), followed by purification. One of the byproducts of this process was bis(2,2-dinitropropyl) formal (BDNPF), which is currently used as an energetic plasticizer. Compared to commercial nitro plasticizers, BDNPEF synthesized in this study showed good plasticization efficiency with a decrease in glass transition temperature ($T_{g}$) and viscosity of uncured glycidyl azide polymer (GAP) blends, as well as substantial ability to plasticize the GAP-based polyurethanes (PUs). BDNPEF has potential applications as an energetic plasticizer to engineer the properties of the GAP-based energetic PU binders.

Keywords

References

  1. G. Wypych, Handbook of Plasticizers, ChemTec Publishing, Toronto, Canada, 2004
  2. M. Rahman, C.S. Brazel, Prog. Polym. Sci. 29 (2004) 1223. https://doi.org/10.1016/j.progpolymsci.2004.10.001
  3. C. Caner, P.J. Vergano, J.L. Wiles, J. Food Sci. 6 (1998) 1049.
  4. F. Debeaufort, A. Voilley, J. Agric. Food Chem. 45 (1997) 685. https://doi.org/10.1021/jf9606621
  5. J.P. Agrawal, R.D. Hodgson, Organic Chemistry of Explosives, John Wiley & Sons Ltd., West Sussex, England, 2007.
  6. J.R. Goleniewski, J.A. Roberts, U.S. Patent 5,783,769 (1998).
  7. Y.P. Ji, P.R. Li, W. Wang, Y. Lan, F. Ding, Chin. J. Explos. Propellants 28 (2005) 47.
  8. R.H. Taylor, H. Ala, U.S. Patent 5,334,270 (1996).
  9. R.H. Taylor, H. Ala, U.S. Patent 5,579,634 (1996).
  10. K. Menke, S. Eisele, Propellants Explos. Pyrotech. 22 (1997) 112. https://doi.org/10.1002/prep.19970220304
  11. N. Marsh, A. Marsh, Clin. Exp. Pharmacol. Physiol. 27 (2000) 313. https://doi.org/10.1046/j.1440-1681.2000.03240.x
  12. J. Akhavan, The Chemistry of Explosives, 2nd ed., The Royal Society of Chemistry, UK, 2004.
  13. A.T. Camp, L.A. Dickinson, P.R. Mosher, U.S. Patent 3,634,158 (1972).
  14. S.B. Preston, U.S. Patent 5,454,891 (1995).
  15. M.A. Barrio, J. Hu, P.Z. Zhou, N. Cauchon, J. Pharm. Biomed. Anal. 41 (2006) 738. https://doi.org/10.1016/j.jpba.2005.12.033
  16. M. Jang, R.M. Kamens, Environ. Sci. Technol. 35 (2001) 4758. https://doi.org/10.1021/es010790s
  17. J.S. Kim, J.R. Cho, K.D. Lee, J.K. Kim, U.S. Patent 0,056,663 (2007).
  18. M.A. Lenskii, E.E. Shul'ts, A.A. Androshchuk, G.A. Tolstikov, Russ. J. Org. Chem. 45 (2009) 1772. https://doi.org/10.1134/S1070428009120045
  19. K.C. Barsanti, J.F. Pankow, Atmos. Environ. 38 (2004) 4371. https://doi.org/10.1016/j.atmosenv.2004.03.035
  20. M. Jang, N.M. Czoschke, S. Lee, R.M. Kamens, Science 298 (2002) 814. https://doi.org/10.1126/science.1075798
  21. M.J. Zohuriaan, F. Shokrolahi, Polym. Test. 23 (2004) 575. https://doi.org/10.1016/j.polymertesting.2003.11.001
  22. M.M. Feldstein, A. Roos, C. Chevallier, C. Creton, E.E. Dormidontova, Polymer 44 (2003) 1819. https://doi.org/10.1016/S0032-3861(03)00046-6
  23. L.M. Her, S.L. Nail, Pharm. Res. 11 (1994) 54. https://doi.org/10.1023/A:1018989509893
  24. M.-S. Chi, J. Polym. Sci. A: Polym. Chem. 19 (1981) 1767. https://doi.org/10.1002/pol.1981.170190716
  25. N. Wingborg, C. Eldsater, Propellants Explos. Pyrotech. 27 (2002) 314. https://doi.org/10.1002/prep.200290000
  26. B.S. Min, Propellants Explos. Pyrotech. 33 (2008) 131. https://doi.org/10.1002/prep.200700241

Cited by

  1. Quantum Chemical Studies on Structure and Detonation Performance of Bis(2,2-dinitropropyl ethylene)formal vol.27, pp.1, 2012, https://doi.org/10.1063/1674-0068/27/01/45-50
  2. Synthesis and Thermal Characteristics of Nano-Aluminum/Fluorinated Polyurethane Binders vol.20, pp.5, 2012, https://doi.org/10.6108/kspe.2016.20.5.040
  3. Reactive cycloalkane plasticizers covalently linked to energetic polyurethane binders via facile control of an in situ Cu-free azide-alkyne 1,3-dipolar cycloaddition reaction vol.9, pp.45, 2018, https://doi.org/10.1039/c8py00969d
  4. Reactive Energetic Plasticizers Utilizing Cu-Free Azide-Alkyne 1,3-Dipolar Cycloaddition for In-Situ Preparation of Poly(THF- co -GAP)-Based Polyurethane Energetic Binders vol.10, pp.5, 2012, https://doi.org/10.3390/polym10050516
  5. Fabrication of polyurethane binders grafted with functional reactive plasticizers by a catalyst‐free click reaction vol.58, pp.3, 2012, https://doi.org/10.1002/pol.20190088
  6. Investigation of the Compatibility of a Novel Copolymer Based on Polypropylene Glycol/Polyglycidyl nitrate (PPG/PGN) with Plasticizers: Thermal, Rheological, Solubility Parameter and SEM vol.62, pp.6, 2020, https://doi.org/10.1134/s0965545x20330044
  7. Novel Geminal Dinitro Esters As Energetic Plasticizers for GAP Binder vol.60, pp.10, 2021, https://doi.org/10.1021/acs.iecr.0c06078
  8. Synthesis, characterization, and curing of propylene oxide and glycidyl nitrate random copolymer (GN-ran-PO) and investigation of its compatibility with different energetic plasticizers vol.1231, pp.None, 2021, https://doi.org/10.1016/j.molstruc.2021.130008
  9. Study on Properties of Energetic Plasticizer Modified Double‐Base Propellant vol.46, pp.11, 2012, https://doi.org/10.1002/prep.202100085