DOI QR코드

DOI QR Code

Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives

  • Kaboorani, Alireza (Departement des sciences du bois et de la foret, Faculte de foresterie, de geographie et de geomatique, Universite Laval) ;
  • Riedl, Bernard (Departement des sciences du bois et de la foret, Faculte de foresterie, de geographie et de geomatique, Universite Laval)
  • Published : 2012.05.25

Abstract

Nanoparticles of aluminum oxide were used to improve bonding strength of PVA (polyvinyl acetate) in wet conditions and elevated temperatures. Shear strength of wood joints was improved by inclusion of nanoparticles to PVA in all conditions. The improvement on performance of PVA in dry state by adding nanoparticles could be measured in terms of wood failure. In wet conditions and at elevated temperature, nanoparticles significantly increased shear strength of wood joints. Thermal stability of PVA was affected by nanoparticles as well. Nanostructure studies showed that dispersing well nanoparticles in PVA is a crucial step to obtain nanocomposites with superior properties.

Keywords

References

  1. M.L.G. Miranda, C. Tomedi, C.I.D. Bica, D. Samios, Polymer 38 (1997) 1017. https://doi.org/10.1016/S0032-3861(96)00601-5
  2. J. Lee, A.F. Yee, Polymer 41 (2000) 8375. https://doi.org/10.1016/S0032-3861(00)00186-5
  3. T.J. Wooster, S. Abrol, J.M. Hey, D.R. MacFarlane, Composites Part A: Appl. Sci. Manuf. 35 (2004) 75. https://doi.org/10.1016/j.compositesa.2003.09.002
  4. M. Sangermano, G. Malucelli, E. Amerio, A. Priola, E. Billi, G. Rizza, Prog. Org. Coat. 54 (2005) 134. https://doi.org/10.1016/j.porgcoat.2005.05.004
  5. F. Bauer, U. Decker, H. Ernst, M. Findeisen, H. Langguth, R. Mehnert, V. Saverland, R. Hinterwaldner, Int. J. Adhes. Adhes. 26 (2006) 567. https://doi.org/10.1016/j.ijadhadh.2005.11.001
  6. A.J. Kinloch, Adhesion and Adhesives: Science and Technology, Chapman and Hall, London, 1987, p. 3.
  7. R.B. Janota, in: G. DeFrayne (Ed.), High-Performance Adhesive Bonding, Society of Manufacturing Engineers, Dearborn, MI, 1983, p. 4.
  8. M. Hussain, A. Nakahira, S. Nishijima, N. Koichi, Mater. Lett. 26 (1996) 299. https://doi.org/10.1016/0167-577X(95)00253-7
  9. .M. Park, R.V. Subramanian, A.E. Boyoumi, J. Adhes. Sci. Technol. 8 (1994) 133. https://doi.org/10.1163/156856194X00113
  10. P.G. Paper, E.P. Plueddmann, J. Adhes. Sci. Technol. 59 (1991) 831.
  11. A. Kaboorani, B. Riedl, Composites Part A 42 (2011) 1031. https://doi.org/10.1016/j.compositesa.2011.04.007
  12. R.J. Aitken, M.Q. Chaudhry, A.B.A. Boxall, M. Hull, Occup. Med. 56 (2006) 300. https://doi.org/10.1093/occmed/kql051
  13. D.E. Tallman, K.L. Levine, C. Siripirom, V.G. Gelling, G.P. Bierwagen, S.G. Croll, Appl. Surf. Sci. 254 (2008) 5452. https://doi.org/10.1016/j.apsusc.2008.02.099
  14. M. Malenovska, M.U. Neouze, V. Monnier, E. Scolan, R. Pugin, Appl. Surf. Sci. 256 (2009) 9. https://doi.org/10.1016/j.apsusc.2009.01.065
  15. W. Sawyer, K. Freudenberg, P. Bhimaraj, L. Schadler, Wear 254 (2003) 573. https://doi.org/10.1016/S0043-1648(03)00252-7
  16. W.G. Sawyer, K.D. Freudenberg, P. Bhimaraj, L.S. Schadler, Wear 254 (2003) 573. https://doi.org/10.1016/S0043-1648(03)00252-7
  17. J.L. Hajas, P. Schulte, Proc. RadTech Europe Conference and Exhibition, Barcelona, SP, October 2000.
  18. C. Sow, B. Riedl, P. Blanchet, Prog. Org. Coat. 67 (2010) 188. https://doi.org/10.1016/j.porgcoat.2009.10.002
  19. C. Sow, B. Riedl, P. Blanchet, J. Coat. Technol. Res. 8 (2011) 211. https://doi.org/10.1007/s11998-010-9298-6
  20. A. Omrani, A.A. Rostami, Mater. Sci. Eng. A 517 (2009) 185. https://doi.org/10.1016/j.msea.2009.03.076
  21. L. Zhai, G. Ling, J. Li, Y. Wang, Mater. Lett. 60 (2006) 3031. https://doi.org/10.1016/j.matlet.2006.02.038
  22. B.N. Dudkin, G.G. Zainullin, P.V. Krivoshapkin, E.F. Krivoshapkina, M.A. Ryazanov, Glass Phys. Chem. 34 (2008) 187. https://doi.org/10.1134/S1087659608020120
  23. M. Akatsuka, Y. Takezawa, S. Amagi, Polymer 42 (2001) 3003. https://doi.org/10.1016/S0032-3861(00)00669-8
  24. S. Zhao, L.S. Schadler, R. Duncan, H. Hillborg, T. Auletta, Compos. Sci. Technol. 68 (2008) 2965. https://doi.org/10.1016/j.compscitech.2008.01.009
  25. C.H. Chen, J.Y. Jian, F.S. Yen, Composites Part A: Appl. Sci. Manuf. 40 (2009) 463. https://doi.org/10.1016/j.compositesa.2009.01.010
  26. Y.A. Gorbatkina, V.G. Ivanova-Mumzhieva, T.M. Ul'yanova, Polym. Sci. Ser. C 49 (2007) 131.
  27. Z.H. Guo, T. Pereira, O. Choi, Y. Wang, H.T. Hahn, J. Mater. Chem. 16 (2006) 2800. https://doi.org/10.1039/b603020c
  28. B. Wetzel, F. Haupert, M.Q. Zhang, Compos. Sci. Technol. 63 (2003) 2055. https://doi.org/10.1016/S0266-3538(03)00115-5
  29. H. Zhou, Nianjie 12 (1991) 11.
  30. Y. Cai, China Adhes. 6 (1997) 43.
  31. Y. Chen, Nianjie 17 (1996) 25.
  32. G. Lu, Huagong Shikan 10 (1996) 17.
  33. J. Comyn, Adhesion Science, The Royal Society of Chemistry, London, 1997.
  34. J. Wang, Zhanjie 20 (1999) 16.
  35. L. Qiao, A.J. Easteal, C.J. Bolt, P.K. Coveny, A. Franich, Pigm. Resin Technol. 29 (2000) 152. https://doi.org/10.1108/03699420010334303
  36. M. Huang, S. Kuo, H. Wu, F. Chang, S. Fang, Polymer 43 (2002) 2479. https://doi.org/10.1016/S0032-3861(02)00007-1
  37. F. Lopez-Suevos, C.E. Frazier, Holzforschung 60 (2006) 313.
  38. S. Kim, H. Kim, Thermochim. Acta 444 (2005) 134.
  39. S. Kim, H. Kim, Int. J. Adhes. Adhes. 25 (2005) 456. https://doi.org/10.1016/j.ijadhadh.2005.01.001
  40. A. Kaboorani, B. Riedl, Int. J. Adhes. Adhes. 31 (2011) 605. https://doi.org/10.1016/j.ijadhadh.2011.06.007
  41. L. Qiao, A. Easteal, J. Pigm. Resin Technol. 30 (2001) 79. https://doi.org/10.1108/03699420110381599
  42. C.H. Hsueh, J. Am. Ceram. Soc. 72 (1987) 344.
  43. R.J. Young, P.W.R. Beaumont, J. Mater. Sci. 12 (1977) 684.
  44. B. Pukanszky, G. Voros, Compos. Interfaces 1 (1993) 411.
  45. Y. Nakamura, M. Yamaguchi, M. Okubo, T. Matsumoto, J. Appl. Polym. Sci. 45 (1992) 1281. https://doi.org/10.1002/app.1992.070450716
  46. E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, J. Varlet, Polymer 42 (2001) 8759. https://doi.org/10.1016/S0032-3861(01)00446-3
  47. P.B. Messersmith, E.P. Giannelis, Chem. Mater. 6 (1994) 1719. https://doi.org/10.1021/cm00046a026
  48. E.P. Giannelis, Adv. Mater. 8 (1996) 29. https://doi.org/10.1002/adma.19960080104
  49. P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Appl. Clay Sci. 15 (1999) 11. https://doi.org/10.1016/S0169-1317(99)00017-4
  50. H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho, Polymer 42 (2001) 9513. https://doi.org/10.1016/S0032-3861(01)00473-6
  51. I.Y. Phang, T. Liu, A. Mohamed, K.P. Pramoda, L. Chen, L. Shen, S.Y. Chow, C. He, X. Lu, X. Hu, Polym. Int. 54 (2005) 456. https://doi.org/10.1002/pi.1721
  52. Y. Zheng, J. Zhang, Q. Li, W. Chen, X. Zhan, Polym. Plast. Technol. Eng. 48 (2009) 384. https://doi.org/10.1080/03602550902725381
  53. Y.T. Zhao, S.L. Zhang, G. Chen, X.N. Cheng, C.Q. Wang, Compos. Sci. Technol. 68 (2008) 1463. https://doi.org/10.1016/j.compscitech.2007.10.036
  54. M. Habibnejad-Korayema, R. Mahmudia, W.J. Pooleb, Mater. Sci. Eng. A 519 (2009) 198. https://doi.org/10.1016/j.msea.2009.05.001
  55. W. Viratyaporn, R.L. Lehman, J. Therm. Anal. Calorim. 103 (2011) 267. https://doi.org/10.1007/s10973-010-1051-y
  56. F. Yang, I. Bogdanova, G.L. Nelson, ACS Symposium Series, American Chemical Society, Washington, DC, 2009.
  57. J. Kuljanin, M. Marinovic-Cincovic, Z. Stojanovic, A. Krkljes, N.D. Abazovic, M.I. Comor, Polym. Degrad. Stab. 94 (2009) 891. https://doi.org/10.1016/j.polymdegradstab.2009.03.004
  58. Z. Xui, J. Zhang, H. Zheng, C. Cai, Y. Huang, J. Mater. Sci. Technol. 21 (2005) 866.

Cited by

  1. Effect of the Incorporation of Modified Silicas on the Final Properties of Wood Adhesives : Effect of the Incorporation of Modified Silicas … vol.7, pp.10, 2012, https://doi.org/10.1002/mren.201300117
  2. Computational Modelling of Delamination and Disbond in Adhesively Bonded Joints and the Relevant Damage Detection Approaches vol.1, pp.4, 2012, https://doi.org/10.7569/raa.2013.097315
  3. Nano-Enhanced Adhesives vol.2, pp.3, 2014, https://doi.org/10.7569/raa.2014.097307
  4. 폴리우레탄 접착제의 물성에 미치는 PPG, MDI, 2-HEMA 및 butyl acrylate량의 영향 vol.49, pp.3, 2012, https://doi.org/10.7473/ec.2014.49.3.245
  5. 용제를 사용하지 않는 친환경 폴리우레탄 접착제의 합성 및 물성 : DPE-41, TDI, 개시제 및 가소제량의 영향 vol.23, pp.11, 2012, https://doi.org/10.5322/jesi.2014.23.11.1909
  6. Adhesive strength of steel–epoxy composite joints bonded with structural acrylic adhesives filled with silica nanoparticles vol.29, pp.3, 2012, https://doi.org/10.1080/01694243.2014.981469
  7. Effect of nanofillers on adhesion strength of steel joints bonded with acrylic adhesives vol.20, pp.5, 2012, https://doi.org/10.1179/1362171815y.0000000037
  8. Progress on Epoxy/Polyamide and Inorganic Nanofiller-Based Hybrids: Introduction, Application, and Future Potential vol.55, pp.17, 2012, https://doi.org/10.1080/03602559.2016.1185628
  9. Incorporating Cellulose Nanocrystals into the Core of Polymer Latex Particles via Polymer Grafting vol.7, pp.8, 2012, https://doi.org/10.1021/acsmacrolett.8b00334
  10. Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesive joints: a review vol.94, pp.13, 2012, https://doi.org/10.1080/00218464.2018.1452736
  11. Effect of multi-walled carbon nanotubes and silicon carbide nanoparticles on the deleterious influence of water absorption in adhesively bonded joints vol.32, pp.16, 2012, https://doi.org/10.1080/01694243.2018.1447295
  12. Randomly Oriented Strand Board Composites from Nanoengineered Protein-Based Wood Adhesive vol.6, pp.1, 2018, https://doi.org/10.1021/acssuschemeng.7b02686
  13. Chemically Modified Canola Protein–Nanomaterial Hybrid Adhesive Shows Improved Adhesion and Water Resistance vol.6, pp.1, 2012, https://doi.org/10.1021/acssuschemeng.7b03457
  14. Polymer Nanocomposites for Emulsion‐Based Coatings and Adhesives vol.13, pp.2, 2012, https://doi.org/10.1002/mren.201800050
  15. Synthesis of epoxy resins derivatives of naphthalene-2,7-diol and their cross-linked products vol.138, pp.6, 2012, https://doi.org/10.1007/s10973-019-08852-y
  16. An inorganic route to decorate graphene oxide with nanosilica and investigate its effect on anti‐corrosion property of waterborne epoxy vol.31, pp.2, 2020, https://doi.org/10.1002/pat.4770
  17. Surfactant-Free Latex Nanocomposites Stabilized and Reinforced by Hydrophobically Functionalized Cellulose Nanocrystals vol.2, pp.6, 2020, https://doi.org/10.1021/acsapm.0c00263
  18. Enhanced mechanical properties are possible with urethane dimethacrylate-based experimental restorative dental composite vol.7, pp.10, 2012, https://doi.org/10.1088/2053-1591/abbf7f
  19. Impact of melamine and its derivatives on the properties of poly(vinyl acetate)-based composite wood adhesive vol.79, pp.1, 2012, https://doi.org/10.1007/s00107-020-01618-6
  20. Preparation and characterization of tannin-based adhesives reinforced with cellulose nanofibrils for wood bonding vol.75, pp.2, 2021, https://doi.org/10.1515/hf-2020-0033