DOI QR코드

DOI QR Code

Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes

  • Published : 2012.05.25

Abstract

SBR and NBR composites were thermally aged and the crosslink density changes were investigated. The crosslink density changes of the SBR composite after thermal aging were larger than those of the NBR one. This could be explained by the allylic proton contents and the role of phenyl or nitrile group as a ligand in a zinc complex. The activation energies of the SBR composite were slightly lower than those of the NBR one. The lifetime to reach 50 and 100% increase of crosslink density of the NBR sample was shorter than that of the SBR one.

Keywords

References

  1. N.J. Morrison, M. Porter, Rubber Chem. Technol. 57 (1984) 63. https://doi.org/10.5254/1.3536002
  2. C.H. Chen, J.L. Koenig, J.R. Shelton, E.A. Collins, Rubber Chem. Technol. 54 (1981) 734. https://doi.org/10.5254/1.3535831
  3. S.-S. Choi, Kor. Polym. J. 5 (1997) 39.
  4. R.W. Layer, Rubber Chem. Technol. 65 (1992) 211. https://doi.org/10.5254/1.3538601
  5. R.P. Brown, T. Butler, Natural Ageing of Rubber. Changes in Physical Properties over 40 years, RAPRA Technology Ltd., 2000.
  6. R.P. Brown, T. Butler, S.W. Hawley, Ageing of Rubber. Accelerated Heat Ageing Test Results, RAPRA Technology Ltd., 2001.
  7. B.-T. Kim, S.-S. Choi, Elastomer 40 (2005) 29.
  8. S.-S. Choi, J. Appl. Polym. Sci. 85 (2002) 385. https://doi.org/10.1002/app.10614
  9. S.-S. Choi, J. Appl. Polym. Sci. 79 (2001) 1127. https://doi.org/10.1002/1097-4628(20010207)79:6<1127::AID-APP170>3.0.CO;2-8
  10. S.-S. Choi, D.-H. Chang, I.-S. Kim, Elastomer 37 (2002) 217.
  11. S.-S. Choi, D.-H. Han, J. Appl. Polym. Sci. 114 (2009) 935. https://doi.org/10.1002/app.30699
  12. S.-S. Choi, J. Appl. Polym. Sci. 75 (2000) 1378. https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1378::AID-APP9>3.0.CO;2-I
  13. M.H.S. Gradwell, W.J. McGill, J. Appl. Polym. Sci. 61 (1996) 1131. https://doi.org/10.1002/(SICI)1097-4628(19960815)61:7<1131::AID-APP9>3.0.CO;2-N
  14. M.H.S. Gradwell, W.J. McGill, J. Appl. Polym. Sci. 61 (1996) 1515. https://doi.org/10.1002/(SICI)1097-4628(19960829)61:9<1515::AID-APP11>3.0.CO;2-P
  15. S.-S. Choi, J.-C. Kim, S.G. Lee, Y.L. Joo, Macromol. Res. 16 (2008) 561. https://doi.org/10.1007/BF03218560

Cited by

  1. Thermal Aging Behaviors of Weather Resistant Rubber Composites of EPDM, IIR, and BIIR vol.47, pp.2, 2012, https://doi.org/10.7473/ec.2012.47.2.148
  2. Facile Modification of Surface of Silica Particles with Organosilanepolyol and Their Characterization vol.34, pp.12, 2012, https://doi.org/10.5012/bkcs.2013.34.12.3805
  3. Environmental Factors on Aging of Nitrile Butadiene Rubber (NBR) - A Review vol.1033, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/amr.1033-1034.987
  4. Influence of Extender Oil on Properties of Solution Styrene-Butadiene Rubber Composites vol.50, pp.3, 2012, https://doi.org/10.7473/ec.2015.50.3.196
  5. Changes in tensile and tearing fracture properties of carbon‐black filled rubber vulcanizates by thermal aging vol.26, pp.11, 2015, https://doi.org/10.1002/pat.3683
  6. Influence of microstructure in nitrile polymer on curing characteristics and mechanical properties of carbon black-filled rubber composite for seal applications vol.48, pp.8, 2012, https://doi.org/10.1177/0095244315613621
  7. Nanodot-Loaded Clay Nanotubes as Green and Sustained Radical Scavengers for Elastomer vol.5, pp.2, 2012, https://doi.org/10.1021/acssuschemeng.6b02523
  8. Hybrid factors influencing wet grip and rolling resistance properties of solution styrene‐butadiene rubber composites vol.67, pp.3, 2018, https://doi.org/10.1002/pi.5515
  9. Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber vol.441, pp.None, 2012, https://doi.org/10.1016/j.apsusc.2018.02.086
  10. Influence of Randomness in Rubber Materials Parameters on the Reliability of Rubber O-Ring Seal vol.12, pp.9, 2012, https://doi.org/10.3390/ma12091566
  11. Oil resistance and low‐temperature characteristics of plasticized nitrile butadiene rubber compounds vol.136, pp.32, 2019, https://doi.org/10.1002/app.47851
  12. Preparation of Rubber Particulates for Micro Dust Study using Cryogenic Crushing vol.54, pp.4, 2019, https://doi.org/10.7473/ec.2019.54.4.330
  13. Tribological Characteristic of a Ring Seal with Graphite Filler vol.13, pp.2, 2012, https://doi.org/10.3390/ma13020311
  14. Influence of Carbon Black Contents and Rubber Compositions on Formation of Wear Debris of Rubber Vulcanizates vol.55, pp.2, 2020, https://doi.org/10.7473/ec.2020.55.2.108
  15. Correlation between the Crosslink Characteristics and Mechanical Properties of Natural Rubber Compound via Accelerators and Reinforcement vol.12, pp.9, 2012, https://doi.org/10.3390/polym12092020
  16. NMR Studies on the Phase-Resolved Evolution of Cross-Link Densities in Thermo-Oxidatively Aged Elastomer Blends vol.53, pp.24, 2012, https://doi.org/10.1021/acs.macromol.0c01614
  17. Relationships between properties and rapid gas decompression (RGD) resistance of various filled nitrile butadiene rubber vulcanizates under high-pressure hydrogen vol.30, pp.None, 2012, https://doi.org/10.1016/j.mtcomm.2021.103038