DOI QR코드

DOI QR Code

Feasibility of using a rotating packed bed in preparing coupled ZnO/$SnO_2$ photocatalysts

  • Lin, Chia-Chang (Department of Chemical and Materials Engineering, Chang Gung University) ;
  • Chiang, Yu-Ju (Department of Chemical and Materials Engineering, Chang Gung University)
  • Published : 2012.07.25

Abstract

In this work, coupled ZnO/$SnO_2$ photocatalysts were prepared in a rotating packed bed (RPB) via coprecipitation. The precursors of coupled ZnO/$SnO_2$ photocatalysts were formed from solutions of zinc sulfate, tin tetrachloride and sodium hydroxide. The calcinations of these precursors yielded coupled ZnO/$SnO_2$ photocatalysts. The effect of calcination temperature on the characteristics and photocatalytic activity of coupled ZnO/$SnO_2$ photocatalysts was studied. The photocatalytic activity of coupled ZnO/$SnO_2$ photocatalysts was evaluated using the photocatalytic decolorization of methylene blue. The experimental results reveal that coupled ZnO/$SnO_2$ photocatalysts that were obtained by calcination at $600^{\circ}C$ for 10 h were the most efficient in decolorizing methylene blue.

Keywords

References

  1. S.F. Chen, W. Zhao, W. Liu, S.J. Zhang, Appl. Surf. Sci. 255 (2008) 2478. https://doi.org/10.1016/j.apsusc.2008.07.115
  2. J.T Tian, L.J. Chen, Y.S. Yin, X. Wang, J.H. Dai, Z.B. Zhu, X.Y. Liu, P.W. Wu, Surf. Coat. Technol. 204 (2009) 205. https://doi.org/10.1016/j.surfcoat.2009.07.008
  3. S.J. Liao, H. Donggen, D.H. Yu, Y.L. Su, G.Q. Yuan, J. Photochem. Photobiol. A: Chem. 168 (2004) 7. https://doi.org/10.1016/j.jphotochem.2004.05.010
  4. T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura, J. Photochem. Photobiol. A: Chem. 118 (1998) 41.
  5. B. Pal, M. Sharon, G. Nogami, Mater. Chem. Phys. 59 (1999) 254. https://doi.org/10.1016/S0254-0584(99)00071-1
  6. L.Y. Shi, C.Z. Li, H.C. Gu, D.Y. Fang, Mater. Chem. Phys. 62 (2000) 62. https://doi.org/10.1016/S0254-0584(99)00171-6
  7. K. Vinodgopal, P.V. Kamat, Environ. Sci. Technol. 29 (1995) 841. https://doi.org/10.1021/es00003a037
  8. C. Wang, J.C. Zhao, X.M. Wang, B.X. Mai, G.Y. Sheng, P.A. Peng, J.M. Fu, Appl. Catal. B: Environ. 39 (2002) 269. https://doi.org/10.1016/S0926-3373(02)00115-7
  9. C. Wang, X.M. Wang, J.C. Zhao, B.X. Mai, G.Y. Sheng, P.A. Peng, J.M. Fu, J. Mater. Sci. 37 (2002) 2989. https://doi.org/10.1023/A:1016077216172
  10. C. Wang, X.M. Wang, B.Q. Xu, J.C. Zhao, B.X. Mai, P.A. Peng, G.Y. Sheng, J.M. Fu, J. Photochem. Photobiol. A: Chem. 168 (2004) 47. https://doi.org/10.1016/j.jphotochem.2004.05.014
  11. M.L. Zhang, T.C. An, X.H. Hu, C. Wang, G.Y. Sheng, J.M. Fu, Appl. Catal. A: Gen. 260 (2004) 215. https://doi.org/10.1016/j.apcata.2003.10.025
  12. M.L. Zhang, G.Y. Sheng, J.M. Fu, T.C. An, X.M. Wang, X.H. Hu, Mater. Lett. 59 (2005) 3641. https://doi.org/10.1016/j.matlet.2005.06.037
  13. X.D. Lou, X.H. Jia, J.Q. Xu, S.Z. Liu, Q.H. Gao, Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process 432 (2006) 221. https://doi.org/10.1016/j.msea.2006.06.010
  14. X.L. Fu, X.X. Wang, J.L. Long, Z.X. Ding, T.J. Yan, G.Y. Zhang, Z.Z. Zhang, H.X. Lin, X.Z. Fu, J. Solid State Chem. 182 (2009) 517. https://doi.org/10.1016/j.jssc.2008.11.029
  15. L.R. Zheng, Y.H. Zheng, C.Q. Chen, Y.Y. Zhan, X.Y. Lin, Q. Zheng, K.M. Wei, J.F. Zhu, Inorg. Chem. 48 (2009) 1819. https://doi.org/10.1021/ic802293p
  16. C. Wang, B.Q. Xu, X.M. Wang, J.C. Zhao, J. Solid State Chem. 178 (2005) 3500. https://doi.org/10.1016/j.jssc.2005.09.005
  17. N. Serpone, E. Borgarello, M. Gratzel, J. Chem. Soc.: Chem. Commun. (1984) 342.
  18. A. Kurz, M.A. Aegerter, Thin Solid Films 516 (2008) 4513. https://doi.org/10.1016/j.tsf.2007.05.082
  19. M.R. Vaezi, Mater. Chem. Phys. 110 (2008) 89. https://doi.org/10.1016/j.matchemphys.2008.01.014
  20. J.H. Yu, G.M. Choi, Sens. Actuator B: Chem. 52 (1998) 251. https://doi.org/10.1016/S0925-4005(98)00275-5
  21. J.H. Yu, G.M. Choi, Sens. Actuator B: Chem. 61 (1999) 59. https://doi.org/10.1016/S0925-4005(99)00280-4
  22. F. Belliard, P.A. Connor, J.T.S. Irvine, Solid State Ion. 135 (2000) 163. https://doi.org/10.1016/S0167-2738(00)00296-4
  23. Y. Su, L.A. Zhu, L. Xu, Y.Q. Chen, H.H. Xiao, Q.T. Zhou, Y. Feng, Mater. Lett. 61 (2007) 351. https://doi.org/10.1016/j.matlet.2006.04.062
  24. D.L. Young, H. Moutinho, Y. Yan, T.J. Coutts, J. Appl. Phys. 92 (2002) 310. https://doi.org/10.1063/1.1483104
  25. J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, J.H. Jeong, B. Cheong, Y.J. Baik, W.M. Kim, Thin Solid Films 494 (2006) 42. https://doi.org/10.1016/j.tsf.2005.07.195
  26. J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, B. Cheong, W.M. Kim, Appl. Surf. Sci. 253 (2007) 7398.
  27. J.F. Chen, Y.H. Wang, F. Guo, X.M. Wang, C. Zheng, Ind. Eng. Chem. Res. 39 (2000) 948. https://doi.org/10.1021/ie990549a
  28. J.F. Chen, L. Shao, C.G. Zhang, J.M. Chen, G.W. Chu, J. Mater. Sci. Lett. 22 (2003) 437. https://doi.org/10.1023/A:1022907610955
  29. J.F. Chen, Y.L. Li, Y.H. Wang, J. Yun, D.P. Cao, Mater. Res. Bull. 39 (2004) 185. https://doi.org/10.1016/j.materresbull.2003.10.017
  30. C.Y. Tai, C.T. Tai, M.H. Chang, H.S. Liu, Ind. Eng. Chem. Res. 46 (2007) 5536. https://doi.org/10.1021/ie060869b
  31. C.Y. Tai, Y.H. Wang, H.S. Liu, AIChE J. 54 (2008) 445. https://doi.org/10.1002/aic.11396
  32. C.Y. Tai, Y.H. Wang, Y.W. Kuo, M.H. Chang, H.S. Liu, Chem. Eng. Sci. 64 (2009) 3112. https://doi.org/10.1016/j.ces.2009.03.041
  33. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B: Environ. 49 (2004) 1. https://doi.org/10.1016/j.apcatb.2003.11.010

Cited by

  1. Preparation of porous micro-nano-structure NiO/ZnO heterojunction and its photocatalytic property vol.4, pp.6, 2012, https://doi.org/10.1039/c3ra44670k
  2. Fabrication of nanocubic ZnO/SnO2 film-based humidity sensor with high sensitivity by ultrasonic-assisted solution growth method at different Zn:Sn precursor ratios vol.4, pp.7, 2012, https://doi.org/10.1007/s13204-013-0262-5
  3. A study on the absorption of ammonia into water in a rotor-stator reactor vol.93, pp.1, 2015, https://doi.org/10.1002/cjce.22096
  4. Fabrication and Spectral Properties of Zinc Zirconate Nanorod Composites by Sol-Gel Method for Optical Applications: Effect of Chloride and Oxychloride Precursors and Sintering Temperature on Band Gap vol.45, pp.2, 2012, https://doi.org/10.1080/15533174.2013.831894
  5. Preparation of a Novel Zinc Zirconate Nanocomposite Coated on Glass for Removal of a Textile Dye (Reactive Brilliant Red X8B) From Water vol.45, pp.10, 2015, https://doi.org/10.1080/15533174.2013.862821
  6. Biomedical Applications of Functionalized ZnO Nanomaterials: from Biosensors to Bioimaging vol.3, pp.1, 2012, https://doi.org/10.1002/admi.201500494
  7. Inexpensive and quick photocatalytic activity of rare earth (Er, Yb) co-doped ZnO nanoparticles for degradation of methyl orange dye vol.227, pp.None, 2012, https://doi.org/10.1016/j.seppur.2019.115726
  8. ZnO Nanospheres Fabricated by Mechanochemical Method with Photocatalytic Properties vol.11, pp.5, 2012, https://doi.org/10.3390/catal11050572