DOI QR코드

DOI QR Code

A review of hydrofluoric acid and its use in the car wash industry

  • Genuino, Homer C. (Department of Chemistry, University of Connecticut) ;
  • Opembe, Naftali N. (Department of Chemistry, University of Connecticut) ;
  • Njagi, Eric C. (Department of Chemistry, University of Connecticut) ;
  • McClain, Skye (Nerac, Inc., 1 Technology Drive) ;
  • Suib, Steven L. (Department of Chemistry, University of Connecticut)
  • Published : 2012.09.25

Abstract

Hydrofluoric acid (HF) is a common ingredient in car wash cleaning solutions mainly because it is highly effective and relatively inexpensive. Particulate matter from brake pads and discs, tire wear, and abrasion of road surface accumulated on the exterior of automobiles are aggressively removed with the use of car wash cleaning solutions containing HF. The unique properties of HF to dissolve silica, concrete, most metals, and metallic oxides cause effective breakdown of rust, road dust, and grime on automobiles. However, HF is a very caustic and a highly toxic substance. Due to hazards associated with the storage, use, and exposure of HF to humans and the environment, there is a need to find safe, yet equally effective alternatives to HF as a cleaning agent. Improvements in cleaning processes, development of available technologies, and utilization of cleaning products containing natural and various benign polymers and surfactants are healthy and environmentally sound alternatives to HF for car wash applications. However, these alternatives may not be as effective as HF. Efforts geared towards finding a replacement for HF remain a challenge, but the outcome would render several benefits to the car wash industry, including abating pollution and providing a safer working environment for everyone.

Keywords

References

  1. U.S. Environmental Protection Agency, Hydrogen chloride and hydrogen fluoride emission factors for the National Acid Precipitation Assessment Program (NAPAP) emission inventory, Research Triangle Park, Durham, North Carolina, EPA-600/7-85/041, 1985.
  2. A.B. Burg, in: J.H. Simons (Ed.), Fluorine Chemistry, I, Academic Press, New York, 1950, p. 180.
  3. J. Strachan, A deadly rinse: the dangers of hydrofluoric acid, Professional Carwashing and Detailing. http://www.carwash.com/article.asp?IndexID=4230101, 1999.
  4. N. Leiber, Keenwash: A waterless car wash from the Middle East. Innovator, Bloomberg Businessweek. http://www.businessweek.com/magazine/content/ 11_26/b4234046583125.htm, 2011.
  5. J. DeMarre, Water Technol. Magazine (1998) 118-120.
  6. B. Ruder, Water Technol. Magazine (1998) 121-124.
  7. N. Paxeus, Water Sci. Technol. 33 (1996) 1-8.
  8. C. Brown, Water conservation in the professional car wash industry, A report for the International Carwash Association. International Carwash Association, Inc.. http://www.carwash.org/SiteCollectionDocuments/Research/Environmental%20 Reports/Water%20Conservation%20in%20the%20Professional%20Car%20Wash% 20Industry.pdf, 1999.
  9. U.S. Environmental Protection Agency, Hydrogen fluoride study: report to congress: Research Triangle Park, Druham, North Carolina, EPA-550/R-93/001, 1993.
  10. K. Mercer, Take me out to the carwash: Successful residential and communitybased non-point source pollution prevention, Stormwater. http://www.stormh 2o.com/may-june-2002/carwash-successful-residential.aspx, 2002.
  11. Research and Innovative Technology Administration, Bureau of Transportation Statistics, Table 1-11: Number of U.S. aircraft, vehicles, vessels, and other conveyances. http://www.bts.gov/publications/national_transportation_ statistics/html/table_01_11.html, 2008.
  12. S.E. Manahan, Environmental Science and Technology: A Sustainable Approach to Green Science and Technology, second ed., CRC Press, FL, USA, 2007, pp. 307-310.
  13. J. Aigueperse, P. Mollard, D. Devilliers, M. Chemla, R. Faron, R. Romano, J.P. Cuer, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2005.
  14. U.S. Geological Survey, Area Reports-Domestic: U.S. Geological Survey Minerals Yearbook 2006, 2, Government Printing Office, Washington D.C., 2009, pp. 15-3.
  15. M.M. Miller, Minerals Yearbook, Fluorspar (Advance Release), U.S. Geological Survey Minerals Yearbook, 2011, pp. 26. 1-26.13. http://minerals.usgs.gov/ minerals/pubs/commodity/fluorspar/myb1-2009-fluor.pdf, 2009.
  16. K.A. McGee, T.M. Gerlach, Volcanic hazards fact sheet: volcanic gas, U.S. Geological Survey Open-File Report, 95-85, pp. 2. http://vulcan.wr.usgs.gov/Glossary/ Emissions/Publications/OFR95-85/OFR95-85.html, 1995.
  17. R. Carpenter, Geochim. Cosmochim. Acta 33 (1969) 1153-1167. https://doi.org/10.1016/0016-7037(69)90038-6
  18. O.G. Bartels, Health Phys. 22 (1972) 387-392. https://doi.org/10.1097/00004032-197204000-00011
  19. H.F. Mark, D.F. Othmer, C.G. Overberger, G.T. Seaborg (Eds.), third ed., Kirk- Othmer Encyclopedia of Chemical Technology, vol. 10, John Wiley and Sons, New York, 1980, p. 285.
  20. DuPont Chemicals, Material Safety Data Sheet, Hydrofluoric acid-Anhydrous, Wilmington, Delaware, 1991, pp. 138.
  21. S.C. Mitchell, in: H.R. Waring, B.G. Stevenson, S.C. Mitchell (Eds.), Molecules of Death,, second ed., Imperial College Press, London, 2007, pp. 119-130.
  22. A.F. Holleman, E. Wiberg, Inorganic Chemistry, Academic Press, San Diego, CA, USA, 2001, pp. 425.
  23. National Institute for Occupational Safety and Health, U.S. Department of Health, Education, and Welfare: Criteria for a Recommended Standard Occupational Exposure to Hydrogen Fluoride, HEW Publication No. (NIOSH) 76-143, GPO No. 017-033-00171-5, U.S. Government Printing Office, Washington, D.C., 1976.
  24. M.M. Miller, Minerals Yearbook, Fluorspar (Advance Release), U.S. Geological Survey Minerals Yearbook, 2010, pp. 26. 1-26.10. http://minerals.usgs.gov/ minerals/pubs/commodity/fluorspar/myb1-2008-fluor.pdf, 2008.
  25. M. Kirschner, Hydrofluoric Acid, Chemical Market Reporter 268 (16) (2005) 38.
  26. Honeywell Specialty Materials, Recommended medical treatment for HF exposure, Morristown, New Jersey, Honeywell International, Inc., pp. 1-16. http:// www51.honeywell.com/sm/hfacid/common/documents/HF_medical_book.pdf, 2006.
  27. F. Ullmann, Ullmann's Encyclopedia of Industrial Chemistry, sixth ed., Wiley VCH, New York, 2003.
  28. J.L. Galvez, J. Dufour, C. Negro, F. Lopez-Mateos, Ind. Eng. Chem. Res. 46 (2007) 5221-5227. https://doi.org/10.1021/ie061343u
  29. C.D. Hance, P.A. Solomon, L.G. Salmon, T. Fall, G.R. Cass, Environ. Sci. Technol. 31 (1997) 956-959. https://doi.org/10.1021/es950930w
  30. B. Conley, T. Shaikh, D.A. Atwood, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., New York, 2002.
  31. G. Stefanidakis, J.E. Gwyn, in: J.J. McKetta (Ed.), Chemical Processing Handbook, CRC Press, Boca Raton, FL, USA, 1993, pp. 80-138.
  32. D.J. Monk, D.S. Soane, R.T. Howe, Thin Solid Films 232 (1993) 1-12. https://doi.org/10.1016/0040-6090(93)90752-B
  33. H.-D. Jakubke, H. Jeschkeit (Eds.), Concise Encyclopedia Chemistry, revised ed., Bibliographisches Institut & F.A. Brockhaus AG, Mannheim, Germany, 1994, p. 834.
  34. J.P. Salame, Hydrofluoric acid + truck washing = death. http://www.interclean. com/InterClean/List/hf-warning/Hydrofluoric Acid report.htm, 2010.
  35. B. Markert, Sci. Total Environ. 176 (1995) 45-61. https://doi.org/10.1016/0048-9697(95)04829-4
  36. J. Scanca, R.U. Milcica, M. Strazar, O. Burica, Sci. Total Environ. 250 (2000) 9-19. https://doi.org/10.1016/S0048-9697(99)00478-7
  37. R.C. Lathrop, P.W. Rasmussen, K.K. Knauer, Water Air Soil Pollut. 56 (1991) 295-307. https://doi.org/10.1007/BF00342278
  38. Y. Feng, R.S. Barratt, Sci. Total Environ. 143 (1994) 157-161. https://doi.org/10.1016/0048-9697(94)90453-7
  39. J.C. Ely, C.R. Neal, J.A. O'Neill Jr., J.C. Jain, Chem. Geol. 157 (1999) 219-234. https://doi.org/10.1016/S0009-2541(98)00204-6
  40. N.L. Rose, J. Paleolimnol. 3 (1990) 45-53.
  41. G. Merrington, R.J. Smernik, Sci. Total Environ. 327 (2004) 239-247. https://doi.org/10.1016/S0048-9697(03)00166-9
  42. C. Dietl, W. Reifenhauser, L. Peichl, Sci. Total Environ. 205 (1997) 235-244. https://doi.org/10.1016/S0048-9697(97)00204-0
  43. N.G. Mistkawi, Fundamental studies in selective wet etching and corrosion processes for high-performance semiconductor devices, Dissertation, Portland State University, Department of Chemistry. http://archives.pdx.edu/ds/psu/ 4704, 2010.
  44. D.O. Jonas, L. Machemer, Combined cycle journal, first quarter (2004) 3-7.
  45. D. Edwards, Bot. J. Linn. Soc. 84 (1982) 223-256. https://doi.org/10.1111/j.1095-8339.1982.tb00536.x
  46. C.F. Smith, A.R. Hendrickson, J. Petrol. Tech. 17 (1965) 215-222.
  47. K. Fredenhagen, Z. Anorg. Allg. Chem. 210 (1933) 210-224. https://doi.org/10.1002/zaac.19332100216
  48. E.U. Franck, F. Meyer, Fluorwasserstoff III, Z. Elektrochem. 63 (1959) 571-582.
  49. C.D. Hodgeman, Handbook of Chemistry and Physics, 33 ed., Chemical Rubber Publishing Co., Boca Raton, FL, USA, 1951, 1677.
  50. P.A. Munter, O.T. Aepli, R.A. Kossatz, Ind. Eng. Chem. 41 (1949) 1504-1508. https://doi.org/10.1021/ie50475a051
  51. H.H. Broene, T.J. De Vries, J. Am. Chem. Soc. 69 (1947) 1644-1646. https://doi.org/10.1021/ja01199a022
  52. P. Ayotte, M. Hebert, P. Marchand, J. Chem. Phys. 123 (2005) 184501-1- 184501-8. https://doi.org/10.1063/1.2090259
  53. F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, Wiley VCH, New York, 1999.
  54. J.C. McCoubrey, Trans. Faraday Soc. 51 (1955) 743-747.
  55. L. Pauling, J. Chem. Educ. 53 (1976) 762. https://doi.org/10.1021/ed053p762
  56. P.A. Gigue` ge, S. Turrell, J. Am. Chem. Soc. 102 (1980) 5473-5481. https://doi.org/10.1021/ja00537a008
  57. K. Ando, J.T. Hynes, J. Phys. Chem. A 103 (1999) 10398-10408. https://doi.org/10.1021/jp992481i
  58. A.J. Kresge, Y. Chiang, J. Phys. Chem. 77 (1973) 822-825. https://doi.org/10.1021/j100625a018
  59. A. Uritski, I. Presiado, Y. Erez, R. Gepshtein, D. Huppert, J. Phys. Chem. C 113 (2009) 7342-7354. https://doi.org/10.1021/jp900338c
  60. G.A.C.M. Spierings, J. Mater. Sci. 28 (1993) 6261-6273. https://doi.org/10.1007/BF01352182
  61. D.M. Knotter, J. Am. Chem. Soc. 122 (2000) 4345-4351. https://doi.org/10.1021/ja993803z
  62. P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Inorganic Chemistry, fourth ed., W. H. Freeman and Company, New York, 2006.
  63. M.F.A. Dove, P.G. Harrison, P. Hubberstey, R.J. Pulham, M.G. Barker, N. Logan, D.B. Sowerby, G. Davidson, The Halogens, in: C.C. Addison (Ed.), Inorganic chemistry of the main group elements, 2, The Chemical Society Burlington House, London, 1977, pp. 672-675.
  64. J.R. Davis, Corrosion Understanding the basics, ASM International, Materials Park, OH, USA, 2000, pp. 229-230.
  65. J.-Z. Li, J.-G. Huang, Y.-W. Tian, C.-S. Liu, Trans. Nonferrous Met. Soc. China 19 (2009) 50-54. https://doi.org/10.1016/S1003-6326(08)60227-7
  66. M. Rockel, in: U. Heubner (Ed.), Nickel Alloys, Marcel Dekker, Inc., New York, NY, USA, 1998, pp. 44-52.
  67. E.W. Flick, Advanced Cleaning Product Formulations, Noyes Publishing, William Andrew Publications, LLC, Norwich, New York, 1999, pp. 178-201.
  68. F.U. Ahmed, in: U. Zoller (Ed.), Handbook of Detergents Part E: Applications, 141, CRC Press, Boca Raton, FL, USA, 2009, pp. 201-286.
  69. G.-J. Wei, D.M. Daniel, M.D. Levitt, Hydrofluoric acid generating composition and method of treating surfaces, U.S. Patent No. 6,579,377, USA (2003).
  70. A. Thorpe, R.M. Harrison, Sci. Total Environ. 400 (2008) 270-282. https://doi.org/10.1016/j.scitotenv.2008.06.007
  71. D. Chan, G.W. Stachowiak, J. Automobile Eng. Proc. Inst. Mech. Eng., Part D 218 (2004) 953-966. https://doi.org/10.1243/0954407041856773
  72. J. Toboldt, L. Johnson, S.W. Olive, Automotive Encyclopedia, Goodheart-Wilcox Co., South Holland, IL, USA, 1989.
  73. J.P. Gallagher, P.H. Dougherty, Aramid containing friction materials, U.S. Patent No. 4,374,211, USA (1983).
  74. C.C. Engberg, The regulation and manufacture of brake pads: the feasibility of reformulation to reduce the copper load to the San Francisco Bay, Prepared for the Palo Alto Regional Water Quality Control Plant. http://www.p2pays.org/ref/ 02/01393.pdf, 1995.
  75. M.A.K. Atkinson, M.O. O'Sullivan, S. Zuber, R.F. Dodson, Am. J. Ind. Med. 46 (2004) 545-553. https://doi.org/10.1002/ajim.20097
  76. M. Mosleh, B.A. Khemet, Tribol. Trans. 49 (2006) 279-283. https://doi.org/10.1080/05698190600639913
  77. M. Eriksson, S. Jacobson, Tribol. Int. 33 (2000) 817-827. https://doi.org/10.1016/S0301-679X(00)00127-4
  78. K. Adachi, Y. Tainosho, Environ. Int. 30 (2004) 1009-1017. https://doi.org/10.1016/j.envint.2004.04.004
  79. P. Wahlin, R. Berkowicz, F. Palmgren, Atmos. Environ. 40 (2006) 2151-2159. https://doi.org/10.1016/j.atmosenv.2005.11.049
  80. E. Manno, D. Varrica, G. Dongarra, Atmos. Environ. 40 (2006) 5929-5941. https://doi.org/10.1016/j.atmosenv.2006.05.020
  81. M. Murakami, F. Nakajima, H. Furumai, B. Tomiyasu, M. Owari, Chemosphere 67 (2007) 2000-2010. https://doi.org/10.1016/j.chemosphere.2006.11.044
  82. A. Iijima, K. Sato, K. Yano, H. Tago, M. Kato, H. Kimura, N. Furuta, Atmos. Environ. 41 (2007) 4908-4919. https://doi.org/10.1016/j.atmosenv.2007.02.005
  83. O. von Uexkull, S. Skerfving, R. Doyle, M. Braungart, J. Cleaner Prod. 13 (2005) 19-31. https://doi.org/10.1016/j.jclepro.2003.10.008
  84. A. Rauterberg-Wulff, Beitrag des Reifen- und Bremsabriebs zur Russemission an Strassen. Fortschritt-Berichte Reihe 15, Nr. 202, VDI Verlag, Dusseldorf, Germany, 1998.
  85. O kotest Magazin, Ausgebremst-Test Bremsbelage 1, 2002, pp. 72.
  86. J.E. Fergusson, D.E. Ryan, Sci. Total Environ. 34 (1984) 101-116. https://doi.org/10.1016/0048-9697(84)90044-5
  87. G. Weckwerth, Atmos. Environ. 35 (2001) 5525-5536. https://doi.org/10.1016/S1352-2310(01)00234-5
  88. A. Christoforidis, N. Stamatis, Geoderma 151 (2009) 257-263. https://doi.org/10.1016/j.geoderma.2009.04.016
  89. L.T. Fairhall, Industrial Toxicology, second ed., Williams & Wilkins Co, Baltimore, Maryland, 1957.
  90. M. Yamashita, M. Yamashita, M. Suzuki, H. Hirai, H. Kajigaya, Crit. Care Med. 29 (2001) 1575-1578. https://doi.org/10.1097/00003246-200108000-00013
  91. M. Upfal, C. Doyle, J. Occup. Med. 32 (1990) 726-731.
  92. J.E. Amoore, E. Hautala, J. Appl. Toxicol. 3 (1983) 272-290. https://doi.org/10.1002/jat.2550030603
  93. A.B.T.J. Boink, Pathophysiological mechanisms of hydrofluoric acid and fluoride intoxication: an explorative study in rats and pigs, Thesis, University of Utrecht, The Netherlands, 1993.
  94. P.B. Tepperman, J. Occup. Med. 22 (1980) 691-692. https://doi.org/10.1097/00043764-198010000-00018
  95. E.M. Caravati, Am. J. Emerg. Med. 6 (1988) 143-150.
  96. G.J. Wilkes, Emerg. Med. 5 (1993) 155-158.
  97. M. Ohtani, N. Nishida, T. Chiba, H. Muto, N. Yoshioka, Forensic Sci. Int. 167 (2007) 49-52. https://doi.org/10.1016/j.forsciint.2005.12.008
  98. R.S. Hoffman, L.S. Nelson, M.A. Howland, N.A. Lewin, N.E. Flomenbaum, L.R. Goldfrank, Goldfrank's Manual of Toxicologic Emergencies, McGraw-Hill Professional, New York, 2007, pp. 1333.
  99. J.J.R. Kirkpatrick, D.S. Enion, D.A.R. Burd, Burns 21 (1995) 483-493. https://doi.org/10.1016/0305-4179(95)93254-H
  100. V. Bjornhagen, J. Hojer, C. Karlson-Stiber, A.I. Selden, M. Sundbom, J. Toxicol. Clin. Toxicol. 41 (2003) 855-860. https://doi.org/10.1081/CLT-120025351
  101. R.J. Greco, C.E. Hartford, L.R. Haith Jr., M.L. Patton, J. Trauma 28 (1988) 1593-1596. https://doi.org/10.1097/00005373-198811000-00015
  102. M. Dalamaga, K. Karmaniolas, A. Nikolaidou, E. Papadavid, J. Burn Care Res. 29 (2008) 541-543. https://doi.org/10.1097/BCR.0b013e3181711152
  103. J.C. Bertolini, J. Emerg. Med. 10 (1992) 163-168. https://doi.org/10.1016/0736-4679(92)90211-B
  104. G. Dowdak, K. Rose, R.J. Rohrich, J. Burn Care Rehabil. 15 (1994) 323-327. https://doi.org/10.1097/00004630-199407000-00006
  105. R.I. Sheridan, C.M. Ryan, W.C. Duinby Jr., J. Blair, R.G. Tompkins, J.F. Burke, Burns 21 (1995) 62-64. https://doi.org/10.1016/0305-4179(95)90785-X
  106. S.T. Seyb, L. Noordhoek, S. Botens, M.M. Mani, J. Burn Care Rehabil. 16 (1995) 253-257. https://doi.org/10.1097/00004630-199505000-00006
  107. K.J. DiLuigi, Am. J. Nurs. 101 (2001) 24AAA-124AAA.
  108. M. Hatzifotis, A. Williams, M. Muller, S. Pegg, Burns 30 (2004) 156-159. https://doi.org/10.1016/j.burns.2003.09.031
  109. F.M. Buckingham, J. Occup. Med. 30 (1988) 873-874. https://doi.org/10.1097/00043764-198811000-00013
  110. National Institute for Occupational Safety and Health, NTIS Publication No. PB-94-195047, Documentation for Immediately Dangerous to Life or Health concentrations (IDLHs). http://www.cdc.gov/niosh/idlh/idlh-1.html, 1994.
  111. American Chemistry Council, Emergency Response Guideline for Anhydrous Hydrogen Fluoride, Hydrogen Fluoride Panel, Arlington, VA. http://www. americanchemistry.com/s_acc/sec_directory.asp?CID=1457&DID=5883, 2007.
  112. G.A. Olah, J. Org. Chem. 70 (2005) 2413-2429. https://doi.org/10.1021/jo040285o
  113. M. Herlem, Pure Appl. Chem. 49 (1977) 107-113. https://doi.org/10.1351/pac197749010107
  114. Oregon Occupational Safety and Health Administration, Hazard Alert, Hydrofluoric (HF) acid in commercial cleaners for vehicles, OR-OSHA 2993 (4/09). http://www.orosha.org/pdf/hazards/2993-22.pdf, 2009.
  115. H.E. Stockinger, in: G.D. Clayton, F.E. Clayton (Eds.), fourth ed., Patty's Industrial Hygiene and Toxicology, 2B, Wiley, New York, 1981, pp. 2937-2954.
  116. E.B. Segal, J. Chem. Health Saf. 15 (2008) 5-6.
  117. K. Boussu, C. Kindts, C. Vandecasteele, B. Van der Bruggen, Sep. Purif. Technol. 54 (2007) 139-146. https://doi.org/10.1016/j.seppur.2006.08.024
  118. L.D. Duke, Y.J. Chung, Waste Manage. 15 (1995) 543-558. https://doi.org/10.1016/0956-053X(96)00010-4
  119. C. Brown, Water use and wastewater discharge in professional car washes, A report for the International Carwash Association, International Carwash Association, Inc.. http://www.carcarecentral.com/International Carwash Association, 2002.
  120. B.O. Kwach, J.O. Lalah, Bull. Environ. Contam. Toxicol. 83 (2009) 727-733. https://doi.org/10.1007/s00128-009-9859-5
  121. C. Fall, C.M. Lopez-Vazquez, M.C. Jimenez-Moleon, K.M. Ba, C. Diaz-Delgado, D. Garcia-Pulido, M. Lucero-Chavez, Revista Mexicana De Ingenieria Quimica 6 (2007) 175-184.
  122. C. Brown, Water effluent and solid waste characteristics in the professional car wash industry, A report for the International Carwash Association, Interna- tional Carwash Association, Inc.. http://www.carwash.org/SiteCollection Documents/Research/Environmental%20Reports/Water%20Effluent%20and% 20Solid%20Waste%20Characteristics.pdf, 2002).
  123. C. Brown, Water use in the professional carwash industry, A Report for the International Carwash Association, International Carwash Association, Inc.. http://www. carwash.org/SiteCollectionDocuments/Research/Environmental %20Reports/Water%20Use%20in%20the%20Professional%20Car%20Wash%20 Industry.pdf, 2002.
  124. H. Janik, A. Kupiec, Polish J. Environ. Stud. 16 (2007) 927-931.
  125. D.B. Kittelson, J. Aerosol Sci. 29 (1998) 575-588. https://doi.org/10.1016/S0021-8502(97)10037-4
  126. U.S. Department of Ecology, Stormwater management manual for Western Washington, Washington State, Water Quality Program, Publication Nos. 99- 11 through 99-15, Volume IV, Source Control BMPs. http://www.ecy.wa.gov/ biblio/9914.html, 2001.
  127. Z.A. Bhatti, Q. Mahmood, A.I. Raja, A.H. Malik, M.S. Khan, D. Wu, Phys. Chem. Earth 36 (2010) 465-469.
  128. T. Hamada, Y. Miyazald, Desalination 169 (2004) 257-267.
  129. K. Akiniwa, Fluoride 30 (1997) 89-104.
  130. A. Breton, C. Vialle, M. Montrejaud-Vignoles, C. Cecutti, C. Vignoles, C. Sablayrolles, Fresen. Environ. Bull. 19 (2010) 1954-1962.
  131. J. Gromley, The truth about ammonium bifluoride. Professional Carwashing & Detailing. http://www.carwash.com/articleprint.asp?print=1&IndexID=6631269, 2001.
  132. Air Products and Chemicals, Inc., Industrial and Institutional Cleaning Formulary, Pennsylvania, USA, pp. 22. http://www.tomah3.com/files/110-10-006- US_brochure.pdf, 2010.
  133. M.D. Levitt, T.J. Kloss, M.E. Besse, R.D. Hei, J.D. Hoyt, C. O'Connor, V.F. Man, Composition and method for road-film removal, U.S. Patent No. 7,482,315, USA (2009).
  134. V. Chernin, R.W. Kubala, R. Martens, Metal brightener and surface cleaner, U.S. Patent No. 7,384,902, USA (2008).
  135. L. Minevski, Tire wheel cleaner comprising a dialkyl sulfosuccinate and phosphate ester surfactant mixture, U.S. Patent No. 7,390,773, USA (2008).
  136. E.A. Jordan, W.-C. Su, R.J. Baumgart, F.E. Lockwood, Touchless wheel and tire cleaner composition, U.S. Patent No. 20,040,097,390, USA (2003).
  137. D.P. Murphy, Metal brightening composition and process that do not damage glass, U.S. Patent No. 5,810,938, USA (1998).
  138. P.F. King, D.D. Fekete, Low temperature aluminum cleaning composition and process, U.S. Patent No. 3,969,135, USA (1976).
  139. D.M. Loch, Tank process for plating aluminum substrates including porous aluminum castings, U.S. Patent No. 4,346,128, USA (1982).
  140. D.M. Loch, Non-chromated deoxidizer, U.S. Patent No. 4,614,607, USA (1986).
  141. M. Howe, Method for cleaning an automotive or truck wheel surface, U.S. Patent No. 5,733,377, USA (1998).
  142. G.D. Ward, R.N. Peterson, K. Donda, Method of washing a vehicle using a twopart washing composition, U.S. Patent No. 5,932,023, USA (1999).
  143. K.R. Smith, R.D. Hei, M.E. Besse, J.D. Hoyt, Cleaning composition comprising an inorganic acid mixture and a cationic surfactant, U.S. Patent No. 6,982,241, USA (2006).

Cited by

  1. Formation of Electroless Ni-B on Bifluoride-Activated Magnesium and AZ91D Alloy vol.160, pp.9, 2012, https://doi.org/10.1149/2.012309jes
  2. Anodic Dissolution of API X70 Pipeline Steel in Arabian Gulf Seawater after Different Exposure Intervals vol.2014, pp.None, 2012, https://doi.org/10.1155/2014/753041
  3. Dental zirconia can be etched by hydrofluoric acid vol.33, pp.1, 2012, https://doi.org/10.4012/dmj.2013-243
  4. Removal of Important Parameter from Car Wash Wastewater - A Review vol.773, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/amm.773-774.1153
  5. Occupational Hydrofluoric Acid Injury from Car and Truck Washing — Washington State, 2001–2013 vol.64, pp.32, 2012, https://doi.org/10.15585/mmwr.mm6432a4
  6. Pollutants Characterization of Car Wash Wastewater vol.47, pp.None, 2016, https://doi.org/10.1051/matecconf/20164705008
  7. How Do I Diagnose and Treat Workers With Injuries From Hydrofluoric Acid? vol.58, pp.7, 2012, https://doi.org/10.1097/jom.0000000000000762
  8. Copper Oxide as a Hydrogen Fluoride Scavenger for High-Voltage LiNi0.5Mn1.5O4 Positive Electrode vol.164, pp.12, 2012, https://doi.org/10.1149/2.1641712jes
  9. Synthesis of Polydopamine‐Like Nanocapsules via Removal of a Sacrificial Mesoporous Silica Template with Water vol.23, pp.12, 2012, https://doi.org/10.1002/chem.201604631
  10. Recovery of Calcium Fluoride from Highly Contaminated Fluoric/Hexafluorosilicic Acid Wastewater vol.59, pp.2, 2012, https://doi.org/10.2320/matertrans.m-m2017850
  11. 초미분말 석회석 현탁액을 이용한 전자산업 폐수 불소이온 제거연구 vol.29, pp.3, 2012, https://doi.org/10.14478/ace.2017.1071
  12. Analysis of metal content and vertical stratification of epiphytic mosses along a Karst Mountain highway vol.25, pp.29, 2012, https://doi.org/10.1007/s11356-018-2883-4
  13. Changes in Bond Strength and Topography for Y-TZP Etched with Hydrofluoric Acid Depending on Concentration and Temperature Conditions vol.56, pp.11, 2020, https://doi.org/10.3390/medicina56110568
  14. Recent progress on the corrosion behavior of metallic materials in HF solution vol.39, pp.4, 2012, https://doi.org/10.1515/corrrev-2020-0101
  15. Ground water toxicity due to fluoride contamination in Southwestern Lahore, Punjab, Pakistan vol.21, pp.6, 2021, https://doi.org/10.2166/ws.2021.084
  16. Novel fluoride selective voltammetric sensing method by amino phenylboronic acid-zirconium oxide nanoparticles modified gold electrode vol.174, pp.None, 2012, https://doi.org/10.1016/j.microc.2021.107073