DOI QR코드

DOI QR Code

Influence of combined alkaline treatment and Fe-Ti-loading modification on ZSM-5 zeolite and its catalytic performance in light olefin production

  • Hao, Kun (State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum) ;
  • Shen, Baojian (State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum) ;
  • Wang, Yandan (State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum) ;
  • Ren, Jia (State Key Laboratory of Heavy Oil Processing, The Key Laboratory of Catalysis of CNPC, College of Chemical Engineering, China University of Petroleum)
  • Published : 2012.09.25

Abstract

Alkali-treatment and Fe-Ti-loading were used to modify ZSM-5 zeolite. It was found that alkali- treatment created mesopore and Fe-Ti-loading improved the redox property of ZSM-5 catalyst, although both modifications led to a reduction of the total acid sites amount. The catalytic performance test indicated that the coexistence of meso-microporosity and Fe-Ti-loading on ZSM-5 catalyst is benefit to improve the yield of light olefins in catalytic cracking. The catalyst containing the combined modified ZSM-5 increased the propylene yield by 0.55 wt% and total light olefins yield by 0.69 wt% in catalytic cracking of Canadian LGO (light gas oil), compared with the reference HZSM-5.

Keywords

References

  1. A. Corma, F.V. Melo, L. Sauvanaud, F. Ortega, Catal. Today 107 (2005) 699.
  2. T.F. Degnan, G.K. Chitnis, P.H. Schipper, Micropor. Mesopor. Mater. 35 (2000) 245.
  3. J.S. Buchanan, Catal. Today 55 (2000) 207. https://doi.org/10.1016/S0920-5861(99)00248-5
  4. J. Lu, Z. Zhao, C. Xu, P. Zhang, A. Duan, Catal. Commun. 7 (2006) 199. https://doi.org/10.1016/j.catcom.2005.10.011
  5. J. Lu, Z. Zhao, C. Xu, A. Duan, P. Zhang, Catal. Lett. 109 (2006) 65. https://doi.org/10.1007/s10562-006-0058-2
  6. Y.B. Luo, Y. Ouyang, X.T. Shu, M.Y. He, Stud. Surf. Sci. Catal. 170 (2007) 600.
  7. A.J. Maia, B. Louis, Y.L. Lam, M.M. Pereira, J. Catal. 269 (2010) 103. https://doi.org/10.1016/j.jcat.2009.10.021
  8. A.J. Maia, B.G. Olinveira, P.M. Esteves, B. Louis, Y.L. Lam, M.M. Pereira, Appl. Catal. A 403 (2011) 58.
  9. X.F. Li, B.J. Shen, C.M. Xu, Appl. Catal. A 375 (2010) 222. https://doi.org/10.1016/j.apcata.2009.12.033
  10. R.L. David, CRC Handbook of Chemistry and Physics 1999-2000, CRC Press, USA, 1999.
  11. K.Y. Wang, X.S. Wang, Appl. Catal. A 172 (1998) 73. https://doi.org/10.1016/S0926-860X(98)00120-3
  12. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi, M. Matsukata, Chem. Lett. 29 (2000) 882.
  13. J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Perez-Ramirez, Micropor. Mesopor. Mater. 69 (2004) 29. https://doi.org/10.1016/j.micromeso.2004.01.002
  14. J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Perez-Ramirez, Colloids Surf. A: Physicochem. Eng. Aspects 241 (2004) 53. https://doi.org/10.1016/j.colsurfa.2004.04.012
  15. J.C. Groen, L.A.A. Peffer, J.A. Moulijn, J. Perez-Ramirez, Chem. Eur. J. 11 (2005) 4983. https://doi.org/10.1002/chem.200500045
  16. I. Melian-Cabrera, S. Espinosa, C. Mentruit, F. Kapteijn, J.A. Moulijn, Catal. Commun. 7 (2006) 100. https://doi.org/10.1016/j.catcom.2005.06.016
  17. I. Melian-Cabrera, S. Espinosa, J.C. Groen, B. v/d Linden, F. Kapteijn, J.A. Moulijn, J. Catal. 238 (2006) 250. https://doi.org/10.1016/j.jcat.2005.11.034
  18. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, M. Matsukata, Appl. Catal. A 219 (2001) 33. https://doi.org/10.1016/S0926-860X(01)00645-7
  19. L. Zhao, B.J. Shen, J.S. Gao, C.M. Xu, J. Catal. 258 (2008) 228. https://doi.org/10.1016/j.jcat.2008.06.015
  20. L. Zhao, J.S. Gao, C.M. Xu, B.J. Shen, Fuel Process. Technol. 92 (2011) 414. https://doi.org/10.1016/j.fuproc.2010.10.003
  21. B.J. Shen, J.Z. Li, K. Hao, L.L. Guo, B. Sun, CN Patent 101559955A (2009).
  22. P. Wang, B.J. Shen, D.D. Shen, T. Peng, J.S. Gao, Catal. Commun. 8 (2007) 1452. https://doi.org/10.1016/j.catcom.2006.12.018
  23. T.A.J. Hardenberg, L. Mertens, P. Mesman, H.C. Muller, C.P. Nicolaides, Zeolite 12 (1992) 685. https://doi.org/10.1016/0144-2449(92)90116-7
  24. M. Rauscher, K. Kesore, R. MoEnnig, W. Schwieger, A. Tiuler, T. Turek, Appl. Catal. A 184 (1999) 249. https://doi.org/10.1016/S0926-860X(99)00088-5
  25. J.C. Groen, J. Perez-Ramirez, Appl. Catal. A 268 (2004) 121. https://doi.org/10.1016/j.apcata.2004.03.031
  26. H.Y. Chen, W.M.H. Sachtler, Catal. Today 42 (1998) 73. https://doi.org/10.1016/S0920-5861(98)00078-9
  27. A. Spojakina, E. Kraleva, K. Jiratova, L. Petrov, Appl. Catal. A 288 (2005) 10. https://doi.org/10.1016/j.apcata.2005.02.034
  28. F.T. Ma, H. Lou, Chin. J. Catal. 5 (1984) 82 (in Chinese).
  29. M. Popova, A. Szegedi, Z. Cherkezova-Zheleva, I. Mitov, N. Kostova, T. Tsoncheva, J. Hazard. Mater. 168 (2009) 226. https://doi.org/10.1016/j.jhazmat.2009.02.018

Cited by

  1. Catalytic Behavior of Alkali Treated H-MOR in Selective Synthesis of Ethylenediamine via Condensation Amination of Monoethanolamine vol.10, pp.4, 2012, https://doi.org/10.3390/catal10040386
  2. Photocatalytic water splitting with noble‐metal free cocatalysts for a comprehensive study of two nonidentical photoreactors designs vol.40, pp.3, 2012, https://doi.org/10.1002/ep.13557
  3. Insights into Au Nanoparticle Size and Chemical State of Au/ZSM-5 Catalyst for Catalytic Cracking of n-Octane to Increase Propylene Production vol.125, pp.29, 2012, https://doi.org/10.1021/acs.jpcc.1c04608
  4. Catalytic cracking of n-heptane over Fe modified HZSM-5 nanosheet to produce light olefins vol.306, pp.None, 2012, https://doi.org/10.1016/j.fuel.2021.121725