DOI QR코드

DOI QR Code

Factors affecting $CO_2$ absorption efficiency in packed column: A review

  • Tan, L.S. (CO2 Management MOR, Universiti Teknologi PETRONAS) ;
  • Shariff, A.M. (CO2 Management MOR, Universiti Teknologi PETRONAS) ;
  • Lau, K.K. (CO2 Management MOR, Universiti Teknologi PETRONAS) ;
  • Bustam, M.A. (CO2 Management MOR, Universiti Teknologi PETRONAS)
  • Published : 2012.11.25

Abstract

Carbon dioxide ($CO_2$) is a major greenhouse gas that results in the climate change. Hence, efforts are in place to control $CO_2$ emissions into the atmosphere. $CO_2$ removal is also an essential step in many industrial processing operations such as coal gasification, natural gas processing and hydrogen manufacturing. Thus far, absorption is the widely used process in industrial for capturing $CO_2$. This paper presents a review on the factors affecting the absorption efficiency for $CO_2$ capture in packed column. Challenges related to the absorption efficiency improvement and the impacts to real application as well as future directions are highlighted.

Keywords

References

  1. H.-J. Leimkuhler, in: H.-J. Leimkuhler (Ed.), Managing $CO_2$ Emissions in the Chemical Industry, Wiley-VCH, Weinheim, 2010, p. 1.
  2. C.J. Hanley, The Star (2010) T2-3.
  3. International Energy Agency, $CO_2$ Emissions from Fuel Combustion, OCDE/IEA, France, 2008.
  4. S. Yan, M. Fang, W. Zhang, W. Zhong, Z. Luo, K. Cen, Energy Conversion and Management 49 (11) (2008) 3188. https://doi.org/10.1016/j.enconman.2008.05.027
  5. M. Wolf, B. Himmelreich, J. Korte, in: H.-J. Leimkuhler (Ed.), Managing $CO_2$ Emissions in the Chemical Industry, Wiley-VCH, Weinheim, 2010, p. 33.
  6. S. Bouzalakos, M.M. Maroto-Valer, in: M.M. Maroto-Valer (Ed.), Developments and Innovation in Carbon Dioxide ($CO_2$) Capture and Storage Technology, vol. 1, Woodhead Publishing Limited and CRC Press LLC, Cornwall, 2010, p. 1.
  7. International Energy Agency, $CO_2$ Capture and Storage: A Key Carbon Abatement Option, OECD/IEA, France, 2008.
  8. D.J. Wuebbles, A.K. Jain, R.G. Watts, in: R.G. Watts (Ed.), Innovative Energy Strategies for $CO_2$ Stabilization, Cambridge University Press, Cambridge, 2002, p. 1.
  9. C. Tsouris, D.S. Aaron, K.A. Williams, Environmental Science & Technology 44 (11) (2010) 4042. https://doi.org/10.1021/es903626u
  10. S. Ahmad, M.Z.A.A. Kadir, S. Shafie, Renewable & Sustainable Energy Reviews 15 (2) (2011) 897. https://doi.org/10.1016/j.rser.2010.11.009
  11. R. Faiz, M. Al-Marzouqi, Separation and Purification Technology 76 (3) (2011) 351. https://doi.org/10.1016/j.seppur.2010.11.005
  12. M. Safari, A. Ghanizadeh, M.M. Montazer-Rahmati, The International Journal of Greenhouse Gas Control 3 (1) (2009) 3. https://doi.org/10.1016/j.ijggc.2008.05.001
  13. N.H. Darman, A.R. Harun, The Petroleum Policy and Management Project, 4th Workshop on the China-Shichuan Basin Case Study, Beijing, 2006.
  14. A.A. Olajire, Energy 35 (6) (2010) 2610. https://doi.org/10.1016/j.energy.2010.02.030
  15. L.O. Nord, R. Anantharaman, O. Bolland, The International Journal of Greenhouse Gas Control 3 (4) (2009) 385. https://doi.org/10.1016/j.ijggc.2009.02.001
  16. D.M. D'Alessandro, B. Smit, J.R. Long, Angewandte Chemie-International Edition 49 (35) (2010) 6058. https://doi.org/10.1002/anie.201000431
  17. H.M. Kvamsdal, K. Jordal, O. Bolland, Energy 32 (1) (2007) 10. https://doi.org/10.1016/j.energy.2006.02.006
  18. P.E. Hardisty, M. Sivapalan, P. Brooks, International Journal of Environmental Research and Public Health 8 (5) (2011) 1460.
  19. D. Aaron, C. Tsouris, Separation Science and Technology 40 (1) (2005) 321.
  20. M.C. Trachtenberg, R.M. Cowan, D.A. Smith, D.A. Horazak, M.D. Jensen, J.D. Laumb, A.P. Vucelic, H. Chen, L. Wang, X. Wu, Energy Procedia 1 (1) (2009) 353. https://doi.org/10.1016/j.egypro.2009.01.048
  21. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, The International Journal of Greenhouse Gas Control 2 (1) (2008) 9. https://doi.org/10.1016/S1750-5836(07)00094-1
  22. E.J. Granite, T. O'Brien, Fuel Processing Technology 86 (14-15) (2005) 1423. https://doi.org/10.1016/j.fuproc.2005.01.001
  23. O. Brandvoll, O. Bolland, Journal of Engineering for Gas Turbines and Power 126 (2) (2004) 316. https://doi.org/10.1115/1.1615251
  24. R.J. Notz, I. Tonnies, N. McCann, G. Scheffknecht, H. Hasse, Chemical Engineering & Technology 34 (2) (2011) 163. https://doi.org/10.1002/ceat.201000491
  25. D.C. Thomas, H.R. Kerr, in: D.C. Thomas (Ed.), Carbon Dioxide Capture for Storage in Deep Geologic Formation, vol. 1, Elsevier, Oxford, 2005.
  26. D. Eimer, in: D.C. Thomas (Ed.), Carbon Dioxide Capture for Storage in Deep Geologic Formation, vol. 1, Elsevier, Oxford, 2005, p. 91.
  27. U. Desideri, in: M.M. Maroto-Valer (Ed.), Developments and Innovation in Carbon Dioxide ($CO_2$) Capture and Storage Technology, vol. 1, Woodhear Publishing Limited and CRC Press LLC, Cornwall, 2010, p. 155.
  28. A. Basile, A. Iulianelli, in: M.M. Maroto-Valer (Ed.), Developments and Innovation in Carbon Dioxide ($CO_2$) Capture and Storage Technology, vol. 1, Woodhead Publishing Limited and CRC Press LLC, Cornwall, 2010, p. 203.
  29. S. Sridhar, B. Smitha, T.M. Aminabhavi, Separation & Purification Reviews 36 (2) (2007) 113. https://doi.org/10.1080/15422110601165967
  30. N. Dave, T. Do, G. Puxty, R. Rowland, P.H.M. Feron, M.I. Attalla, Energy Procedia 1 (1) (2009) 949. https://doi.org/10.1016/j.egypro.2009.01.126
  31. F. Schwendig, in: H.-J. Leimkuhler (Ed.), Managing $CO_2$ Emissions in the Chemical Industry, Wiley-VCH, Weinheim, 2010, p. 391.
  32. A. Aroonwilas, P. Tontiwachwuthikul, Separation and Purification Technology 12 (1) (1997) 67. https://doi.org/10.1016/S1383-5866(97)00037-3
  33. A. Aroonwilas, A. Veawab, Industrial & Engineering Chemistry Research 43 (9) (2004) 2228. https://doi.org/10.1021/ie0306067
  34. O.F. Dawodu, A. Meisen, Journal of Chemical and Engineering Data 39 (3) (1994) 548. https://doi.org/10.1021/je00015a034
  35. E.E. Isaacs, F.D. Otto, A.E. Mather, Journal of Chemical and Engineering Data 22 (1) (1977) 71. https://doi.org/10.1021/je60072a004
  36. H. Lepaumier, D. Picq, P.L. Carrette, Energy Procedia 1 (1) (2009) 893. https://doi.org/10.1016/j.egypro.2009.01.119
  37. K.P. Shen, M.H. Li, Journal of Chemical and Engineering Data 37 (1) (1992) 96. https://doi.org/10.1021/je00005a025
  38. G. Sartori, D.W. Savage, Industrial & Engineering Chemistry Fundamentals 22 (2) (1983) 239. https://doi.org/10.1021/i100010a016
  39. D.M. Austgen, G.T. Rochelle, C.C. Chen, Industrial & Engineering Chemistry Research 30 (3) (1991) 543. https://doi.org/10.1021/ie00051a016
  40. F. Barzagli, F. Mani, M. Peruzzini, Energy & Environmental Science 3 (6) (2010) 772. https://doi.org/10.1039/b924889g
  41. S. Bishnoi, G.T. Rochelle, Fluid Phase Equilibria 168 (2) (2000) 241. https://doi.org/10.1016/S0378-3812(00)00303-4
  42. S. Bishnoi, G.T. Rochelle, Chemical Engineering Science 55 (22) (2000) 5531. https://doi.org/10.1016/S0009-2509(00)00182-2
  43. G.-W. Xu, C.-F. Zhang, S.-J. Qin, W.-H. Gao, H.-B. Liu, Industrial & Engineering Chemistry Research 37 (4) (1998) 1473. https://doi.org/10.1021/ie9506328
  44. A. Henni, J.J. Hromek, P. Tontiwachwuthikul, A. Chakma, Journal of Chemical and Engineering Data 48 (4) (2003) 1062. https://doi.org/10.1021/je030132i
  45. P. Tontiwachwuthikul, A. Meisen, C.J. Lim, Chemical Engineering Science 47 (2) (1992) 381. https://doi.org/10.1016/0009-2509(92)80028-B
  46. A. Aboudheir, P. Tontiwachwuthikul, R. Idem, Industrial & Engineering Chemistry Research 45 (8) (2006) 2553. https://doi.org/10.1021/ie050570d
  47. E. Alper, Industrial & Engineering Chemistry Research 29 (8) (1990) 1725. https://doi.org/10.1021/ie00104a023
  48. S.A. Freeman, R. Dugas, D.H. Van Wagener, T. Nguyen, G.T. Rochelle, The International Journal of Greenhouse Gas Control 4 (2) (2010) 119. https://doi.org/10.1016/j.ijggc.2009.10.008
  49. H.-H. Cheng, C.-S. Tan, Journal of Power Sources 162 (2) (2006) 1431. https://doi.org/10.1016/j.jpowsour.2006.07.046
  50. G. Xu, C. Zhang, S. Qin, Y. Wang, Industrial & Engineering Chemistry Research 31 (3) (1992) 921. https://doi.org/10.1021/ie00003a038
  51. R. Notz, N. Asprion, I. Clausen, H. Hasse, Transactions of the IChemE Part A: Chemical Engineering Research & Design 85 (A4) (2007) 510.
  52. X. Chen, F. Closmann, G.T. Rochelle, Energy Procedia 4 (2011) 101. https://doi.org/10.1016/j.egypro.2011.01.029
  53. G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q. Xu, A. Voice, Chemical Engineering Journal 171 (3) (2011) 725. https://doi.org/10.1016/j.cej.2011.02.011
  54. W.-J. Choi, B.-M. Min, J.-B. Seo, S.-W. Park, K.-J. Oh, Industrial & Engineering Chemistry Research 48 (8) (2009) 4022. https://doi.org/10.1021/ie8018438
  55. G. Pellegrini, R. Strube, G. Manfrida, Energy 35 (2) (2010) 851. https://doi.org/10.1016/j.energy.2009.08.011
  56. G. Puxty, R. Rowland, M. Attalla, Chemical Engineering Science 65 (2) (2010) 915. https://doi.org/10.1016/j.ces.2009.09.042
  57. A.C. Yeh, H. Bai, Science of the Total Environment 228 (2-3) (1999) 121. https://doi.org/10.1016/S0048-9697(99)00025-X
  58. D. Wappel, A. Khan, D. Shallcross, S. Joswig, S. Kentish, G. Stevens, Energy Procedia 1 (1) (2009) 125. https://doi.org/10.1016/j.egypro.2009.01.019
  59. P. Behr, A. Maun, K. Deutgen, A. Tunnat, G. Oeljeklaus, K. Gorner, Energy Procedia 4 (2011) 85. https://doi.org/10.1016/j.egypro.2011.01.027
  60. X. Zhao, M.A. Simioni, K.H. Smith, S.E. Kentish, W. Fei, G.W. Stevens, Energy & Fuels 23 (10) (2009) 4768. https://doi.org/10.1021/ef9001082
  61. A.L. Kohl, R.B. Nielsen, Gas Purification, Gulf Publishing Company, Texas, 1997.
  62. H. Yu, S. Morgan, A. Allport, A. Cottrell, T. Do, J. McGregor, L. Wardhaugh, P. Feron, Chemical Engineering Research & Design 89 (8) (2011) 1204. https://doi.org/10.1016/j.cherd.2011.02.036
  63. S.-Y. Park, B.-M. Min, J.-S. Lee, S.-C. Nam, K.-H. Han, J.-S. Hyun, Preprint Papers - American Chemical Society, Division of Fuel Chemistry 49 (1) (2004) 249.
  64. H. Habaki, J.M. Perera, S.E. Kentish, G.W. Stevens, W. Fei, Separation Science and Technology 42 (4) (2007) 701. https://doi.org/10.1080/01496390601174075
  65. A.J. Cottrell, J.M. McGregor, J. Jansen, Y. Artanto, N. Dave, S. Morgan, P. Pearson, M.I. Attalla, L. Wardhaugh, H. Yu, A. Allport, P.H.M. Feron, Energy Procedia 1 (1) (2009) 1003. https://doi.org/10.1016/j.egypro.2009.01.133
  66. H.R. Godini, D. Mowla, Chemical Engineering Research & Design 86 (4) (2008) 401. https://doi.org/10.1016/j.cherd.2007.11.012
  67. X. Zhang, J. Wang, C.-f. Zhang, Y.-h. Yang, J.-j. Xu, Industrial & Engineering Chemistry Research 42 (1) (2003) 118. https://doi.org/10.1021/ie020223t
  68. N. Arashi, N. Oda, M. Yamada, H. Ota, S. Umeda, M. Tajika, Energy Conversion and Management 38 (Suppl. 1) (1997) S63.
  69. J. Gabrielsen, H.F. Svendsen, M.L. Michelsen, E.H. Stenby, G.M. Kontogeorgis, Chemical Engineering Science 62 (9) (2007) 2397. https://doi.org/10.1016/j.ces.2007.01.034
  70. R.E. Tsai, P. Schultheiss, A. Kettner, J.C. Lewis, A.F. Seibert, R.B. Eldridge, G.T. Rochelle, Industrial & Engineering Chemistry Research 47 (4) (2008) 1253. https://doi.org/10.1021/ie070780l
  71. R.E. Tsai, A.F. Seibert, R.B. Eldridge, G.T. Rochelle, Energy Procedia 1 (1) (2009) 1197. https://doi.org/10.1016/j.egypro.2009.01.157
  72. A. Aroonwilas, A. Veawab, P. Tontiwachwuthikul, Industrial & Engineering Chemistry Research 38 (5) (1999) 2044. https://doi.org/10.1021/ie980728c
  73. F.A. Tobiesen, H.F. Svendsen, O. Juliussen, AIChE Journal 53 (4) (2007) 846. https://doi.org/10.1002/aic.11133
  74. P.M. Launaro, A. Paglianti, Industrial & Engineering Chemistry Research 38 (9) (1999) 3481. https://doi.org/10.1021/ie990024i
  75. R. Thiele, R. Faber, J.U. Repke, H. Thielert, G. Wozny, Chemical Engineering Research & Design 85 (1) (2007) 74. https://doi.org/10.1205/cherd06091
  76. A. Aroonwilas, P. Tontiwachwuthikul, Industrial & Engineering Chemistry Research 37 (2) (1998) 569. https://doi.org/10.1021/ie970482w
  77. P.J.G. Huttenhuis, E.P. van Elk, G.F. Versteeg, Energy Procedia 1 (1) (2009) 1131. https://doi.org/10.1016/j.egypro.2009.01.149
  78. A. Setameteekul, A. Aroonwilas, A. Veawab, Separation and Purification Technology 64 (1) (2008) 16. https://doi.org/10.1016/j.seppur.2008.09.002
  79. J.T. Yeh, H.W. Pennline, K.P. Resnik, Energy & Fuels 15 (2) (2001) 274. https://doi.org/10.1021/ef0002389
  80. A. Aboudheir, D. deMontigny, P. Tontiwachwuthikul, A. Chakma, SPE Gas Technology Symposium, Calgary, Alberta, Canada, 1998.
  81. T. Ogawa, Y. Ohashi, S.u. Yamanaka, K. Miyaike, Energy Procedia 1 (1) (2009) 721. https://doi.org/10.1016/j.egypro.2009.01.095
  82. Y.A. Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, McGraw- Hill, United States of America, 1998.
  83. D.W.P. Bailey, H.M. Feron, Oil & Gas Science and Technology 60 (3) (2005) 461. https://doi.org/10.2516/ogst:2005028
  84. J. Buzek, J. Podkanski, K. Warmuzinski, Energy Conversion and Management 38 (Suppl. 1) (1997) S69.
  85. A. Aroonwilas, P. Tontiwachwuthikul, A. Chakma, Separation and Purification Technology 24 (3) (2001) 403. https://doi.org/10.1016/S1383-5866(01)00140-X
  86. T. Engel, G. Drobny, P. Reid, Physical Chemistry for the Life Sciences, Pearson Prentice Hall, Upper Saddle River, 2008.
  87. M.R. Khosravi Nikou, M.R. Ehsani, International Communications in Heat and Mass Transfer 35 (9) (2008) 1211. https://doi.org/10.1016/j.icheatmasstransfer.2008.05.017
  88. I. Iliuta, C.F. Petre, F. Larachi, Chemical Engineering Science 59 (4) (2004) 879. https://doi.org/10.1016/j.ces.2003.11.020
  89. A. Aroonwilas, A. Chakma, P. Tontiwachwuthikul, A. Veawab, Chemical Engineering Science 58 (17) (2003) 4037. https://doi.org/10.1016/S0009-2509(03)00315-4
  90. H. Chang, S.-C. Chuang, Energy 28 (12) (2003) 1203. https://doi.org/10.1016/S0360-5442(03)00116-6
  91. R.H. Perry, D. Green, Perry's Chemical Engineers' Handbook, McGraw-Hill, New York, 1997.
  92. D. deMontigny, A. Aboudheir, P. Tontiwachwuthikul, A. Chakma, Industrial & Engineering Chemistry Research 45 (8) (2006) 2594. https://doi.org/10.1021/ie050567u
  93. J. Fernandes, P.C. Simoes, J.P.B. Mota, E. Saatdjian, Journal of Supercritical Fluids 47 (1) (2008) 17. https://doi.org/10.1016/j.supflu.2008.07.008
  94. R. Billet, M. Schultes, Chemical Engineering Research & Design 77 (6) (1999) 498. https://doi.org/10.1205/026387699526520
  95. S. Nakov, N. Kolev, L. Ljutzkanov, D. Kolev, Chemical Engineering and Processing: Process Intensification 46 (12) (2007) 1385. https://doi.org/10.1016/j.cep.2006.11.002
  96. R.F.J. Strigle, Random Packings and Packed Towers: Design and Applications, Gulf Publishing, Houston, TX, 1987.
  97. S. Marcia, D. deMontigny, P. Tontiwachwuthikul, Energy Procedia 1 (1) (2009) 1155. https://doi.org/10.1016/j.egypro.2009.01.152
  98. N. Kolev, S. Nakov, L. Ljutzkanov, D. Kolev, Chemical Engineering and Processing 45 (6) (2006) 429. https://doi.org/10.1016/j.cep.2005.10.008
  99. A.B. Rao, E.S. Rubin, Environmental Science & Technology 36 (20) (2002) 4467. https://doi.org/10.1021/es0158861
  100. M.S. Gronvold, O. Falk-Pedersen, N. Imai, K. Ishida, in: D.C. Thomas (Ed.), Carbon Dioxide Capture for Storage in Deep Geological Formations, vol. 1, Elsevier, Oxford, 2005, p. 133.
  101. H.P. Mangalapally, R. Notz, S. Hoch, N. Asprion, G. Sieder, H. Garcia, H. Hasse, Energy Procedia 1 (1) (2009) 963. https://doi.org/10.1016/j.egypro.2009.01.128
  102. H.P. Mangalapally, H. Hasse, Energy Procedia 4 (2011) 1. https://doi.org/10.1016/j.egypro.2011.01.015
  103. H.P. Mangalapally, H. Hasse, Chemical Engineering Science 66 (22) (2011) 5512. https://doi.org/10.1016/j.ces.2011.06.054
  104. R. Notz, I. Tonnies, H.P. Mangalapally, S. Hoch, H. Hasse, The International Journal of Greenhouse Gas Control 5 (3) (2011) 413. https://doi.org/10.1016/j.ijggc.2010.03.008
  105. J. Oexmann, A. Kather, The International Journal of Greenhouse Gas Control 4 (1) (2010) 36. https://doi.org/10.1016/j.ijggc.2009.09.010
  106. V. Bessou, D. Rouzineau, M. Prevost, F. Abbe, C. Dumont, J.-P. Maumus, M. Meyer, Chemical Engineering Science 65 (16) (2010) 4855. https://doi.org/10.1016/j.ces.2010.05.029
  107. N. Kolev, E. Razkazova-Velkova, Chemical Engineering and Processing 40 (5) (2001) 471. https://doi.org/10.1016/S0255-2701(00)00144-6
  108. N. Kolev, E. Razkazova-Velkova, P. Lozanov, Chemical Engineering and Processing 43 (1) (2004) 1. https://doi.org/10.1016/S0255-2701(02)00183-6
  109. C.-C. Lin, W.-T. Liu, C.-S. Tan, Industrial & Engineering Chemistry Research 42 (11) (2003) 2381. https://doi.org/10.1021/ie020669+
  110. C.-S. Tan, J.-E. Chen, Separation and Purification Technology 49 (2) (2006) 174. https://doi.org/10.1016/j.seppur.2005.10.001
  111. M.S. Jassim, G. Rochelle, D. Eimer, C. Ramshaw, Industrial & Engineering Chemistry Research 46 (9) (2007) 2823. https://doi.org/10.1021/ie051104r
  112. H.-H. Cheng, J.-F. Shen, C.-S. Tan, The International Journal of Greenhouse Gas Control 4 (3) (2010) 525. https://doi.org/10.1016/j.ijggc.2009.12.006
  113. J. Kuntz, A. Aroonwilas, Industrial & Engineering Chemistry Research 47 (1) (2008) 145. https://doi.org/10.1021/ie061702l
  114. J. Kuntz, A. Aroonwilas, Energy Procedia 1 (1) (2009) 205. https://doi.org/10.1016/j.egypro.2009.01.029
  115. E.S. Fernandez, E.L.V. Goetheer, Energy Procedia 4 (2011) 868. https://doi.org/10.1016/j.egypro.2011.01.131
  116. G.F. Versteeg, P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron, Method for Absorption of Acid Gases, Nederlandse Organisatie voor Natuurwetenschappelijk Onderzoek TNO, 2011.
  117. H. Chalmers, J. Gibbins, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224 (3) (2010) 505. https://doi.org/10.1243/09544062JMES1516
  118. B. Dressel, D. Deel, T. Rodosta, S. Plasynski, J. Litynski, L. Myer, International Journal of Environmental Research and Public Health 8 (2) (2011) 300.
  119. M. Vucak, J. Peric, A. Zmikic, M.N. Pons, Chemical Engineering Journal 87 (2) (2002) 171. https://doi.org/10.1016/S1385-8947(01)00239-X
  120. M. Vucak, J. Peric, R. Krstulovic, Powder Technology 91 (1) (1997) 69. https://doi.org/10.1016/S0032-5910(96)03248-2
  121. M. Vucak, J. Peric, M.N. Pons, S. Chanel, Powder Technology 101 (1) (1999) 1. https://doi.org/10.1016/S0032-5910(98)00114-4
  122. R. Steeneveldt, B. Berger, T.A. Torp, Chemical Engineering Research & Design 84 (9) (2006) 739. https://doi.org/10.1205/cherd05049
  123. L. Ametistova, J. Twidell, J. Briden, Science of the Total Environment 289 (1-3) (2002) 213. https://doi.org/10.1016/S0048-9697(01)01048-8

Cited by

  1. Reaktive Absorption von Kohlenstoffdioxid in helikalen Hohlfasermembrankontaktoren vol.85, pp.4, 2013, https://doi.org/10.1002/cite.201200240
  2. The role of membranes in post-combustion CO2capture : The role of membranes in post-combustion CO2capture vol.3, pp.5, 2012, https://doi.org/10.1002/ghg.1365
  3. Physical Properties of Aqueous Blends of Sodium Glycinate (SG) and Piperazine (PZ) as a Solvent for CO2 Capture vol.58, pp.3, 2012, https://doi.org/10.1021/je301091z
  4. Modelling of High Pressure, High Concentration Carbon Dioxide Capture in Absorption Column vol.773, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/amm.773-774.1138
  5. A review of CO2 capture by absorption in ionic liquid-based solvents vol.31, pp.4, 2012, https://doi.org/10.1515/revce-2014-0032
  6. A review of CO2 capture by absorption in ionic liquid-based solvents vol.31, pp.4, 2012, https://doi.org/10.1515/revce-2014-0032
  7. CO2 Absorption from Natural Gas: Dynamic Study & Simulation vol.148, pp.None, 2012, https://doi.org/10.1016/j.proeng.2016.06.466
  8. High frequency ultrasonic-assisted CO2 absorption in a high pressure water batch system vol.33, pp.None, 2016, https://doi.org/10.1016/j.ultsonch.2016.04.004
  9. Mass transfer performance and correlations for CO2 absorption into aqueous blended of DEEA/MEA in a random packed column vol.63, pp.7, 2012, https://doi.org/10.1002/aic.15673
  10. Mechanism and Kinetic Study of Carbon Dioxide Absorption into a Methyldiethanolamine/1-Hydroxyethyl-3-methylimidazolium Lysine/Water System vol.32, pp.10, 2012, https://doi.org/10.1021/acs.energyfuels.8b02612
  11. Enhancing CO2 absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure vol.64, pp.6, 2018, https://doi.org/10.1002/aic.16014
  12. Effect of Promoter Concentration on CO2 Separation Using K2CO3 With Reactive Absorption Method in Reactor Packed Column vol.156, pp.None, 2012, https://doi.org/10.1051/matecconf/201815602002
  13. Study of interface composition and height column during absorption process vol.292, pp.None, 2012, https://doi.org/10.1051/matecconf/201929201051
  14. New Approaches in Modeling and Simulation of CO2 Absorption Reactor by Activated Potassium Carbonate Solution vol.7, pp.2, 2019, https://doi.org/10.3390/pr7020078
  15. Process simulation of CO2 capture from CO2EOR associated petroleum gas with aqueous MEA and MDEAhttps://doi.org/10.1002/ese3.308
  16. Characterization and Correlations of CO2 Absorption Performance into Aqueous Amine Blended Solution of Monoethanolamine (MEA) and N,N-Dimethylethanolamine (DMEA) in a Packed Column vol.33, pp.8, 2012, https://doi.org/10.1021/acs.energyfuels.9b01764
  17. Direct Effect of Solvent Viscosity on the Physical Mass Transfer for Wavy Film Flow in a Packed Column vol.58, pp.37, 2012, https://doi.org/10.1021/acs.iecr.9b01226
  18. Fast screening of amine/physical solvent systems and mass transfer studies on efficient aqueous hybrid MEA/Sulfolane solution for postcombustion CO2 capture vol.95, pp.3, 2020, https://doi.org/10.1002/jctb.6246
  19. Effect of ligand type on CO2 adsorption over amine functionalized fibrous adsorbents vol.808, pp.None, 2012, https://doi.org/10.1088/1757-899x/808/1/012009
  20. Effect of ligand type on CO2 adsorption over amine functionalized fibrous adsorbents vol.808, pp.None, 2012, https://doi.org/10.1088/1757-899x/808/1/012009
  21. Continuous Process for Carbon Dioxide Capture Using Lysine and Tetrabutyl Phosphonium Lysinate Aqueous Mixtures in a Packed Tower vol.10, pp.4, 2012, https://doi.org/10.3390/catal10040426
  22. Mass Transfer Performance Study for CO2 Absorption into Non-Precipitated Potassium Carbonate Promoted with Glycine Using Packed Absorption Column vol.12, pp.9, 2020, https://doi.org/10.3390/su12093873
  23. Performance comparison of ultrasonic-assisted and magnetic stirred absorption methods for CO2 separation vol.2, pp.7, 2012, https://doi.org/10.1007/s42452-020-3012-9
  24. CO2 Adsorption Capacity of Organic Alkali Sorbent CPEI from Polyethyleneimine vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/6629365
  25. Environmental Problem Shifting Analysis of Pollution Control Units in a Coal-Fired Powerplant Based on Multiple Regression and LCA Methodology vol.13, pp.9, 2012, https://doi.org/10.3390/su13095142
  26. Micromixing Efficiency in the Presence of an Inert Gas in a Rotor-Stator Spinning Disk Reactor vol.60, pp.24, 2012, https://doi.org/10.1021/acs.iecr.1c01238
  27. A Review of Modeling Rotating Packed Beds and Improving Their Parameters: Gas-Liquid Contact vol.13, pp.14, 2012, https://doi.org/10.3390/su13148046
  28. Influence of Leachate and Nitrifying Bacteria on Photosynthetic Biogas Upgrading in a Two-Stage System vol.9, pp.9, 2012, https://doi.org/10.3390/pr9091503
  29. Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering vol.251, pp.None, 2012, https://doi.org/10.1016/j.micres.2021.126813
  30. Intensified ozonation in packed bubble columns for water treatment: Focus on mass transfer and humic acids removal vol.283, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.131217
  31. Performance and mechanism of in-situ biogas upgrading using anaerobic membrane bioreactor effluent vol.44, pp.None, 2012, https://doi.org/10.1016/j.jwpe.2021.102323
  32. A review on the selection criteria for slow and medium kinetic solvents used in CO2 absorption for natural gas purification vol.98, pp.None, 2012, https://doi.org/10.1016/j.jngse.2021.104390
  33. Surface display of carbonic anhydrase on Escherichia coli for CO2 capture and mineralization vol.7, pp.1, 2012, https://doi.org/10.1016/j.synbio.2021.11.008