DOI QR코드

DOI QR Code

A study on deactivation and regeneration of titanium dioxide during photocatalytic degradation of phthalic acid

  • Gandhi, Vimal G. (Department of Chemical Engineering & Shah-Schulman Center for Surface Science and Nanotechnology, Faculty of Technology, Dharmsinh Desai University) ;
  • Mishra, Manish Kumar (Department of Chemical Engineering & Shah-Schulman Center for Surface Science and Nanotechnology, Faculty of Technology, Dharmsinh Desai University) ;
  • Joshi, Pradyuman A. (Department of Chemical Engineering & Shah-Schulman Center for Surface Science and Nanotechnology, Faculty of Technology, Dharmsinh Desai University)
  • Published : 2012.11.25

Abstract

The cause of deactivation of Degussa P25 titanium dioxide ($TiO_2$) during photocatalytic degradation of phthalic acid in aqueous medium was investigated. Various regeneration methods, such as washing with solvents, hydrogen peroxide ($H_2O_2$) and thermal treatment were attempted to find the best technique for regeneration of spent catalyst. The deactivation and regeneration of $TiO_2$ was monitored using XRD, FTIR, CHNO analysis, zeta potential measurement and surface area analysis. The surface adsorption of phthalic acid and the reaction intermediates deactivates the catalyst. The regeneration by $H_2O_2$ treatment nearly restored the activity, whereas washing with solvents and thermal treatment showed poor regeneration.

Keywords

References

  1. A. Mills, R.H. Davies, D. Worsley, Chemical Society Reviews 22 (1993) 417. https://doi.org/10.1039/cs9932200417
  2. D.F. Ollis, E. Pellizzetti, N. Serpone, Environmental Science and Technology 25 (1991) 1523.
  3. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chemical Reviews 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  4. D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers, Journal of Chemical Technology and Biotechnology 77 (2001) 102.
  5. O. Legrini, E. Oliveros, A.M. Braun, Chemical Reviews 93 (1993) 671. https://doi.org/10.1021/cr00018a003
  6. L. Zhang, J.C. Yu, Catalysis Communications 6 (2005) 684. https://doi.org/10.1016/j.catcom.2005.06.014
  7. E. Piera, J.A. Ayllon, X. Domenech, J. Peral, Catalysis Today 76 (2002) 259. https://doi.org/10.1016/S0920-5861(02)00224-9
  8. M.M. Ameen, G.B. Raupp, Journal of Catalysis 184 (1999) 112. https://doi.org/10.1006/jcat.1999.2442
  9. M.L. Sauer, D.F. Ollis, Journal of Catalysis 163 (1996) 215. https://doi.org/10.1006/jcat.1996.0321
  10. J. Peral, D.F. Ollis, Journal of Molecular Catalysis A: Chemical 115 (1997) 347. https://doi.org/10.1016/S1381-1169(96)00330-5
  11. R.M. Alberici, M.C. Canela, M.N. Eberlin, W.F. Jardim, Applied Catalysis B: Environmental 30 (2001) 389. https://doi.org/10.1016/S0926-3373(00)00256-3
  12. L. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, Journal of Catalysis 196 (2000) 253. https://doi.org/10.1006/jcat.2000.3050
  13. J. Liqiang, X. Baifu, Y. Fulong, W. Baiqi, S. Keying, C. Weimin, F. Honggang, Applied Catalysis A-General 275 (2004) 49. https://doi.org/10.1016/j.apcata.2004.07.019
  14. A. Mills, S. Le Hunte, Journal of Photochemistry and Photobiology A 108 (1997) 1. https://doi.org/10.1016/S1010-6030(97)00118-4
  15. A.R. Almeida, J.A. Moulijn, G. Mul, Journal of Physical Chemistry C 112 (2008) 1552.
  16. V.G. Gandhi, M.K. Mishra, M.S. Rao, A. Kumar, P.A. Joshi, D.O. Shah, Industrial & Engineering Chemistry Research 17 (2011) 331. https://doi.org/10.1016/j.jiec.2011.02.035
  17. U.R. Pillai, E. Sahle-Demessie, Journal of Catalysis 211 (2002) 434.
  18. J.T. Carneiro, J.A. Moulijn, G. Mul, Journal of Catalysis 273 (2010) 199. https://doi.org/10.1016/j.jcat.2010.05.015
  19. J. Shang, Y.F. Zhu, Y.G. Du, Z.L. Xu, Journal of Solid State Chemistry 166 (2002) 395. https://doi.org/10.1006/jssc.2002.9613
  20. K. Chhor, J.F. Bocquet, C. Colbeau-Justin, Materials Chemistry and Physics 86 (2004) 123. https://doi.org/10.1016/j.matchemphys.2004.02.023
  21. J. Moser, S. Punchihewa, P.P. Infelta, M. Gratzel, Langmuir 7 (1991) 3012. https://doi.org/10.1021/la00060a018
  22. S. Tunesi, M.A. Anderson, Langmuir 8 (1992) 487. https://doi.org/10.1021/la00038a030
  23. O. Klug, W. Forsling, Langmuir 15 (1999) 6961. https://doi.org/10.1021/la990105j

Cited by

  1. Investigation of the Photodegradation of Reactive Blue 19 on P-25 Titanium Dioxide: Effect of Experimental Parameters vol.68, pp.3, 2015, https://doi.org/10.1071/ch14024
  2. Modeling of photocatalytic mineralization of phthalic acid in TiO2 suspension using response surface methodology (RSM) vol.53, pp.1, 2012, https://doi.org/10.1080/19443994.2013.834520
  3. Recent Development of VUV-Based Processes for Air Pollutant Degradation vol.4, pp.None, 2012, https://doi.org/10.3389/fenvs.2016.00017
  4. Reactivation and reuse of TiO2-SnS2 composite catalyst for solar-driven water treatment vol.25, pp.3, 2012, https://doi.org/10.1007/s11356-017-0667-x
  5. Synthesis of highly crystalline photocatalysts based on TiO2 and ZnO for the degradation of organic impurities under visible-light irradiation vol.25, pp.3, 2012, https://doi.org/10.1007/s10450-019-00011-x
  6. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation vol.6, pp.11, 2019, https://doi.org/10.1039/c9en00891h
  7. Study on the lifetime of photocatalyst by photocatalytic membrane reactors (PMR) vol.81, pp.1, 2012, https://doi.org/10.2166/wst.2020.091
  8. Assessing the Applicability of Photocatalytic-Concrete Blocks in Reducing the Concentration of Ambient NO2 of Chandigarh, India, Using Box-Behnken Response Surface Design Technique: A Holistic Sustain vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6468749
  9. The impact of environmental water on the potential application of core−shell titania−silica nanospheres as photocatalysts vol.32, pp.31, 2012, https://doi.org/10.1088/1361-6528/abf9c5
  10. Influence of anodizing variables on Cr(VI) photocatalytic reduction using TiO2 nanotubes obtained by anodic oxidation vol.16, pp.None, 2012, https://doi.org/10.1016/j.enmm.2021.100537
  11. Study on effect of deposition temperature on photoelectrocatalyatic performance of immobilized TiO2 vol.787, pp.None, 2012, https://doi.org/10.1016/j.cplett.2021.139279
  12. Usability, durability and regeneration of Ag/ZnO coated microreactor for photocatalytic degradation of methylene blue vol.1251, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2021.132003