DOI QR코드

DOI QR Code

Extraction of metals from $Mo-Ni/Al_2O_3$ spent catalyst using $H_2SO_4$ baking-leaching-solvent extraction technique

  • Park, K.H. (Korea Institute of Geosciences & Mineral Resources (KIGAM)) ;
  • Kim, H.I. (Korea Institute of Geosciences & Mineral Resources (KIGAM)) ;
  • Parhi, P.K. (Korea Institute of Geosciences & Mineral Resources (KIGAM)) ;
  • Mishra, D. (SungEel HiTech) ;
  • Nama, C.W. (Korea Institute of Geosciences & Mineral Resources (KIGAM)) ;
  • Park, J.T. (Korea Institute of Geosciences & Mineral Resources (KIGAM)) ;
  • Kim, D.J. (Korea Institute of Geosciences & Mineral Resources (KIGAM))
  • Published : 2012.11.25

Abstract

Baking-leaching-solvent extraction process was investigated to recover metal values from waste petroleum catalyst. Baking of $Mo-Ni/Al_2O_3$ spent catalyst with $H_2SO_4$ followed by leaching of the baking mass concentrate was presented. Under optimum baking condition (temp. $300^{\circ}C$, $H_2SO_4=1.2$ stoichiometric, baking time 1 h), and low acid leaching condition (temp. $95^{\circ}C$, $H_2SO_4=2%(v/v)$, pulp density 5% and leaching duration 30 min), about 96% Mo, 99% Al and 95% Ni was dissolved. Baking- leaching results were interpreted by two different statistical analysis approaches namely Principal Component (PCA) and Multi Linear Regression Analysis (MLRA). The generated leach liquor was further subjected to the solvent extraction of Mo(VI) by LIX 84-I followed by aluminum using Na-Cyanex 272. A quantitative extraction of Mo(VI) and Al was achieved in 2-stage at A:O ratio of 1:1 with 40% LIX-84-I and 2-stages at 1:1 phase ratio with 60% neutralized Cyanex 272, respectively. While stripping the metals from loaded organic such as Mo(VI) using 20% $NH_4OH$ and Al with 3 M $H_2SO_4$, the metal concentration in the strip solution were enriched up to 1.5 times and 3 times in two and three number of stages, respectively. Based on the results of present study, a conceptual process flow diagram was proposed.

Keywords

References

  1. M. Marafi, A. Stanislaus, Resources, Conservation and Recycling 52 (2008) 859. https://doi.org/10.1016/j.resconrec.2008.02.004
  2. M. Marafi, A. Stanislaus, Resources, Conservation and Recycling 53 (2008) 1. https://doi.org/10.1016/j.resconrec.2008.08.005
  3. M. Marafi, A. Stanislaus, Catalysis Today 130 (2008) 421. https://doi.org/10.1016/j.cattod.2007.10.098
  4. B. Singh, Journal of Hazardous Materials 167 (2009) 24. https://doi.org/10.1016/j.jhazmat.2009.01.071
  5. V.C. Ward, Journal of Metals 41 (1989) 54.
  6. D. Mishra, J.G. Ahn, D.J. Kim, G.R. Chaudhury, D.E. Ralph, Journal of Hazardous Materials 167 (2009) 1231. https://doi.org/10.1016/j.jhazmat.2009.01.056
  7. L. Zeng, C.Y. Cheng, Hydrometallurgy 98 (2009) 1. https://doi.org/10.1016/j.hydromet.2009.03.010
  8. K.H. Park, D. Mohapatra, C.W. Nam, Journal of Hazardous Materials 148 (2007) 287. https://doi.org/10.1016/j.jhazmat.2007.02.034
  9. Y.C. Lai, W.J. Lee, K.L. Huang, C.M. Wu, Journal of Hazardous Materials 154 (2008) 588.
  10. F.M. Lee, R.D. Knudsen, D.R. Kidd, Industrial and Engineering Chemistry Research 31 (1992) 487. https://doi.org/10.1021/ie00002a006
  11. D. Pradhan, J.G. Ahn, D.J. Kim, S.W. Lee, Korean Journal of Chemical Engineering 26 (2009) 736. https://doi.org/10.1007/s11814-009-0123-9
  12. A.S. Medvedev, N.V. Malochkina, Russian Journal of Non-Ferrous Metals 48 (2007) 114. https://doi.org/10.3103/S1067821207020071
  13. I. Gabballah, M. Diona, Resources, Conservation and Recycling 10 (1994) 87. https://doi.org/10.1016/0921-3449(94)90041-8
  14. G. Parkinson, S. Isho, Chemical Engineering 94 (1987) 25.
  15. H.I. Kim, K.H. Park, D. Mishra, Journal of Hazardous Materials 166 (2009) 1540. https://doi.org/10.1016/j.jhazmat.2008.11.051
  16. L. Zeng, C.Y. Cheng, Hydrometallurgy 98 (2009) 10. https://doi.org/10.1016/j.hydromet.2009.03.012
  17. P.K. Parhi, K.H. Park, Hong-In. Kim, Jin-Tae. Park, Hydrometallurgy 105 (2011) 195. https://doi.org/10.1016/j.hydromet.2010.09.004
  18. K.H. Park, H.I. Kim, P.K. Parhi, Separation and Purification Technology 74 (2010) 294. https://doi.org/10.1016/j.seppur.2010.06.018
  19. P. Zhang, K. Inoue, K. Yoshizuka, H. Tsuyama, Hydrometallurgy 41 (1996) 45. https://doi.org/10.1016/0304-386X(95)00015-9
  20. S. Mohamad, W.M. Yunus, M.J. Haron, M.J.A. Rahaman, Journal of Chemical Technology and Biotechnology 83 (2008) 1565. https://doi.org/10.1002/jctb.1971
  21. R.N. Mohanty, S. Singh, V. Chakravortty, K.C. Dash, Journal of Radioanalytical and Nuclear Chemistry 152 (1991) 21. https://doi.org/10.1007/BF02042137
  22. T.C. Lo, M.H.I. Baird, C. Hanson (Eds.), Handbook of Solvent Extraction, Wiley Interscience, New York, 1986.
  23. G.M. Ritcey, A.W. Ashbrrok, Solvent Extraction: Principles and Applications to Process Metallurgy, Elsevier Science, 1984.
  24. J.S. Preston, Hydrometallurgy 14 (1985) 171. https://doi.org/10.1016/0304-386X(85)90032-5
  25. P.E. Tsakiridis, S. Agatzini-Leonardou, Hydrometallurgy 80 (2005) 90. https://doi.org/10.1016/j.hydromet.2005.07.002
  26. I.M. Valverde Jr., J.F. Paulino, J.C. Afonso, Journal of Hazardous Materials 160 (2008) 310. https://doi.org/10.1016/j.jhazmat.2008.03.003
  27. P.V. Shirodkar, A. Mesquita, U.K. Pradhan, X.N. Verlekar, M.T. Babu, P. Vethamony, Environmental Research 109 (2009) 245. https://doi.org/10.1016/j.envres.2008.11.011
  28. S.P. Barik, P.K. Kyung-Ho Park, J.T. Parhi, Park, Hydrometallurgy 111 (2012) 46.
  29. D. Pradhan, D. Mishra, D.J. Kim, J.G. Ahn, G.R. Chaudhury, S.W. Lee, Journal of Hazardous Materials 175 (2010) 267. https://doi.org/10.1016/j.jhazmat.2009.09.159
  30. C. Parija, P.V.R. Bhaskara Sarma, Hydrometallurgy 54 (2000) 195. https://doi.org/10.1016/S0304-386X(99)00069-9
  31. J.W. An, B.H. Jung, Y.H. Lee, T. Tran, S.J. Kim, M.J. Kim, Minerals Engineering 22 (2009) 1020. https://doi.org/10.1016/j.mineng.2008.08.011
  32. D. Mohapatra, K. Hong-In, C.W. Nam, K.H. Park, Separation and Purification Technology 56 (2007) 311. https://doi.org/10.1016/j.seppur.2007.02.017
  33. A.M. Sastre, S. Cahner, F.J. Alguacil, Journal of Chemical Technology and Biotechnology 75 (2000) 54. https://doi.org/10.1002/(SICI)1097-4660(200001)75:1<54::AID-JCTB174>3.0.CO;2-4

Cited by

  1. Rubidium and Potassium Extraction from Granitic Rubidium Ore: Process Optimization and Mechanism Study vol.6, pp.4, 2012, https://doi.org/10.1021/acssuschemeng.7b04445
  2. Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods vol.8, pp.5, 2012, https://doi.org/10.3390/met8050321
  3. Ultrasound-assisted oil removal of γ-Al2O3-based spent hydrodesulfurization catalyst and microwave roasting recovery of metal Mo vol.49, pp.None, 2012, https://doi.org/10.1016/j.ultsonch.2018.05.023
  4. Alkaline pressure oxidative leaching of bismuth-rich and arsenic-rich lead anode slime vol.26, pp.6, 2019, https://doi.org/10.1007/s12613-019-1776-y
  5. Solvent extraction of molybdenum (VI) from spent hydroprocessing catalyst vol.38, pp.5, 2019, https://doi.org/10.1002/ep.13169
  6. Study on Leaching of Molybdenum from a Spent HDS Catalyst vol.1009, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/msf.1009.143
  7. Separation of Al(III), Mo(VI), Ni(II), and V(V) from model hydrochloric acid leach solutions of spent petroleum catalyst by solvent extraction vol.95, pp.11, 2012, https://doi.org/10.1002/jctb.6448