DOI QR코드

DOI QR Code

Determination of trace level carbonate ion in Mg-Al layered double hydroxide:Its significance on the anion exchange behaviour

  • Published : 2012.11.25

Abstract

The presence of trace level (<1 ppm) carbonate ion in the interlayer space of MgAl-LDH has been estimated by ion chromatography technique using a novel inverse chemical suppression method using 0.5 mM $H_2SO_4$ as mobile phase and 25 mM LiCl as regenerating solution. The presence of carbonate ion in the LDH structure was found to affect the anion exchange capacity of MgAl-LDH. This has been illustrated by carrying out anion exchange of nitrate ion in the MgAl-LDH structure with chloride ion. The importance of this simple but accurate technique for the carbonate ion estimation is demonstrated and reported in this communication.

Keywords

References

  1. M. Chakraborty, S. Dasgupta, C. Soundrapandian, J. Chakraborty, S. Ghosh, M.K. Mitra, D. Basu, Journal of Solid State Chemistry 184 (2011) 2439. https://doi.org/10.1016/j.jssc.2011.07.015
  2. N. Kakiuchi, T. Nishimura, M. Inoue, S. Uemura, Bulletin of the Chemical Society of Japan 74 (2001) 165. https://doi.org/10.1246/bcsj.74.165
  3. H.B. Friedrich, M. Govender, X. Makhoba, T.D. Ngcobo, M.O. Onani, Chemical Communications (2003) 2922.
  4. B.X. Li, J. He, D.G. Evans, X. Duan, Applied Clay Science 27 (2004) 199. https://doi.org/10.1016/j.clay.2004.07.002
  5. Z.P. Xu, M. Niebert, K. Porazik, T.L. Walker, H.M. Cooper, A.P.J. Middelberg, P.P. Gray, P.F. Bartlett, G.Q. Lu, Journal of Controlled Release 130 (2008) 86. https://doi.org/10.1016/j.jconrel.2008.05.021
  6. S. Miyata, Clays and Clay Minerals 31 (1983) 305. https://doi.org/10.1346/CCMN.1983.0310409
  7. M. Meyn, K. Beneke, G. Lagaly, Inorganic Chemistry 29 (1990) 5201. https://doi.org/10.1021/ic00351a013
  8. S. Velu, V. Ramkumar, A. Narayanan, C.S. Swamy, Journal of Materials Science 32 (1997) 957. https://doi.org/10.1023/A:1018561918863
  9. F. Bergaya, B.K.G. Theng, G. Lagally, Handbook of Clay Science, Elsevier, Amsterdam, 2006.
  10. J.T. Kloprogge, D.Wharton, L.Hickey, R.L. Frost, American Mineralogist 87(2002) 623.
  11. L.M. Parker, N.B. Milestone, R.H. Newman, Industrial and Engineering Chemistry Research 34 (1995) 1196. https://doi.org/10.1021/ie00043a023
  12. H.Y. Wu, Q.Z. Jiao, Y. Zhao, S.L. Huang, X.F. Li, H.B. Liu, M.J. Zhou, Materials Characterization 61 (2010) 227. https://doi.org/10.1016/j.matchar.2009.12.003
  13. H. Zhang, F.Z. Zhang, L.L. Ren, D.G. Evans, X. Duan, Materials Chemistry and Physics 85 (2004) 207. https://doi.org/10.1016/j.matchemphys.2004.01.020
  14. U. Sharma, B. Tyagi, R.V. Jasra, Industrial and Engineering Chemistry Research 47 (2008) 9588. https://doi.org/10.1021/ie800365t
  15. U. Sharma, B. Tyagi, R.V. Jasra, Industrial and Engineering Chemistry Research 47 (2008) 9588. https://doi.org/10.1021/ie800365t
  16. P.R. Haddad, P.E. Jackson, Ion Chromatography - Principles and Applications, first ed., Elsevier Verlag, Amsterdam, 1990.
  17. C. Eith, M. Kolb, A. Rumi, A. Seubert, Practical Ion Chromatography: An Introduction, second ed., Metrohm Ltd., Switzerland, 2007.
  18. H.M.L. Alsudani, R.I. Al-Bayati, M.M. Barbooti, African Journal of Pure and Applied Chemistry 3 (2009) 165.
  19. A. Carlson, V. Kowalski, Concordia College Journal of Analytical Chemistry 1 (2010) 9.
  20. J.M. Mermet, M. Otto, H.M. Widmer, Analytical Chemistry, first ed., Wiley-VCH, Weinheim, New York, 1994.
  21. H. Zhang, S.H. Guo, K. Zou, X. Duan, Materials Research Bulletin 44 (2009) 1062. https://doi.org/10.1016/j.materresbull.2008.10.016
  22. S.J. Palmer, T. Nguyen, R.L. Frost, Journal of Raman Specroscopy 38 (2007) 1602. https://doi.org/10.1002/jrs.1820
  23. H. Chai, Y.J. Lin, D.G. Evans, D.Q. Li, Industrial and Engineering Chemistry Research (2008) 2855.
  24. S.J. Xia, Z.M. Ni, Q. Xu, B.X. Hu, J. Hu, Journal of Solid State Chemistry 181 (2008) 2610. https://doi.org/10.1016/j.jssc.2008.06.009
  25. F. Li, F.H. Zhang, D.G. Evans, C. Forano, X. Duan, Thermochimica Acta 424 (2004) 15. https://doi.org/10.1016/j.tca.2004.05.007

Cited by

  1. Drug Delivery Using Nanosized Layered Double Hydroxide, an Anionic Clay vol.571, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/kem.571.133
  2. Factors Affecting MoO42– Inhibitor Release from Zn2Al Based Layered Double Hydroxide and Their Implication in Protecting Hot Dip Galvanized Steel by Means of Org vol.7, pp.45, 2012, https://doi.org/10.1021/acsami.5b06702
  3. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium vol.11, pp.4, 2012, https://doi.org/10.1007/s11706-017-0400-1
  4. PH ‐dependent facile synthesis of CaAl‐layered double hydroxides and its effect on the growth inhibition of cancer cells vol.101, pp.9, 2018, https://doi.org/10.1111/jace.15555
  5. Synthesis of a novel magnetic SnNb2O6/CoFe-LDH 2D/2D heterostructure for the degradation of organic pollutants under visible light irradiation vol.54, pp.1, 2012, https://doi.org/10.1007/s10853-018-2810-6
  6. Chloride binding in cement paste with calcined Mg-Al-CO3 LDH (CLDH) under different conditions vol.273, pp.None, 2012, https://doi.org/10.1016/j.conbuildmat.2020.121678
  7. Headspace Gas Chromatographic Method for Carbonate Content Determination in Layered Double Hydroxides vol.6, pp.37, 2021, https://doi.org/10.1002/slct.202102054